Thermally developing electroosmotically generated flow of two viscoelastic fluids, namely the PTT and FENE-P models, through a slit microchannel is considered. Both the viscous dissipation and Joule heating effects are taken into account and a step change in wall temperature is considered to represent physically conceivable thermal entrance conditions. Expressions for the dimensionless temperature and Nusselt number in the form of infinite series are presented. In general, the resultant eigenvalue problem is solved numerically; nevertheless, an analytical solution is presented for the regions close to the entrance. A parametric study reveals that increasing amounts of the Peclet number result in higher wall heat fluxes. The results also indicate higher wall heat fluxes for non-Newtonian fluids in comparison with Newtonian fluids and the difference is increased with increasing the level of elasticity. Furthermore, based on the value of the dimensionless Joule heating parameter, the Nusselt number may be either an increasing or a decreasing function of the axial coordinate or even both of them in the presence of a singularity point. The viscous heating effects are also found to be negligible.

References

References
1.
Reuss
,
F. F.
,
1809
, “
Charge-Induced Flow
,”
Proceedings of the Imperial Society of Naturalists of Moscow
,
3
, pp.
327
344
.
2.
Wang
,
X.
,
Wang
,
S.
,
Gendhar
,
B.
,
Cheng
,
C.
,
Byun
,
C. K.
,
Li
,
G.
,
Zhao
,
M.
, and
Liu
,
S.
,
2009
, “
Electroosmotic Pumps for Microflow Analysis
,”
Trends Analyst. Chem.
,
28
, pp.
64
74
.10.1016/j.trac.2008.09.014
3.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
, pp.
1084
1091
.10.1021/j100787a019
4.
Rice
,
C. L.
, and
Whitehead
,
R.
,
1965
, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
, pp.
4017
4024
.10.1021/j100895a062
5.
Levine
,
S.
,
Marriott
,
J. R.
,
Neale
,
G.
, and
Epstein
,
N.
,
1975
, “
Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta Potentials
,”
J. Colloid Interface Sci.
,
52
, pp.
136
149
.10.1016/0021-9797(75)90310-0
6.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
, pp.
2203
2221
.10.1016/S0020-7225(02)00143-X
7.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
,
2002
, “
Electroosmotic Flow in a Capillary Annulus With High Zeta Potentials
,”
J. Colloid Interface Sci.
,
253
, pp.
285
294
.10.1006/jcis.2002.8453
8.
Yang
,
D.
,
2011
, “
Analytical Solution of Mixed Electroosmotic and Pressure-Driven Flow in Rectangular Microchannels
,”
Key Eng. Mater.
,
483
, pp.
679
683
.10.4028/www.scientific.net/KEM.483.679
9.
Wang
,
C. Y.
,
Liu
,
Y. H.
, and
Chang
,
C. C.
,
2008
, “
Analytical Solution of Electro-Osmotic Flow in a Semicircular Microchannel
,”
Phys. Fluids
,
20
, p.
063105
.10.1063/1.2939399
10.
Chang
,
C. C.
, and
Wang
,
C. Y.
,
2009
, “
Electro-Osmotic Flow in a Sector Microchannel,
Phys. Fluids
,
21
, p.
042002
.10.1063/1.3115060
11.
Xuan
,
X.
, and
Li
,
D.
,
2005
, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interface Sci.
,
289
, pp.
291
303
.10.1016/j.jcis.2005.03.069
12.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully Developed Electroosmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1359
1369
.10.1016/S0017-9310(02)00423-4
13.
Liechty
,
B. C.
,
Webb
,
B. W.
, and
Maynes
,
R. D.
,
2005
, “
Convective Heat Transfer Characteristics of Electro-Osmotically Generated Flow in Microtubes at High Wall Potential
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2360
2371
.10.1016/j.ijheatmasstransfer.2005.01.019
14.
Horiuchi
,
K.
, and
Dutta
,
P.
,
2004
, “
Joule Heating Effects in Electroosmotically Driven Microchannel Flows
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3085
3095
.10.1016/j.ijheatmasstransfer.2004.02.020
15.
Iverson
,
B. D.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2004
, “
Thermally Developing Electroosmotic Convection in Rectangular Microchannels With Vanishing Debye-Layer Thickness
,”
J. Thermophys. Heat Transfer
,
18
, pp.
486
493
.10.2514/1.3769
16.
Broderick
,
S. L.
,
Webb
,
B. W.
, and
Maynes
,
D.
,
2005
, “
Thermally Developing Electro-Osmotic Convection in Microchannels With Finite Debye-Layer Thickness
,”
Numer. Heat Transfer, Part A
,
48
, pp.
941
964
.10.1080/10407780500283309
17.
Chakraborty
,
S.
,
2007
, “
Electroosmotically Driven Capillary Transport of Typical Non-Newtonian Biofluids in Rectangular Microchannels
,”
Anal. Chim. Acta
,
605
, pp.
175
184
.10.1016/j.aca.2007.10.049
18.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
,
2008
, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
, pp.
503
510
.10.1016/j.jcis.2008.06.028
19.
Vasu
,
N.
, and
De
,
S.
,
2010
, “
Electroosmotic Flow of Power-Law Fluids at High Zeta Potentials
,”
Colloids Surf., A
,
368
, pp.
44
52
.10.1016/j.colsurfa.2010.07.014
20.
Das
,
S.
, and
Chakraborty
,
S.
,
2006
, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
,
559
, pp.
15
24
.10.1016/j.aca.2005.11.046
21.
Sadeghi
,
A.
,
Fattahi
,
M.
, and
Saidi
,
M. H.
,
2011
, “
An Approximate Analytical Solution for Electro-Osmotic Flow of Power-Law Fluids in a Planar Microchannel
,”
ASME J. Heat Transfer
,
133
, p.
091701
.10.1115/1.4003968
22.
Sadeghi
,
A.
,
Saidi
,
M. H.
, and
Mozafari
,
A. A.
,
2011
, “
Heat Transfer Due to Electroosmotic Flow of Viscoelastic Fluids in a Slit Microchannel
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4069
4077
.10.1016/j.ijheatmasstransfer.2011.04.004
23.
Yang
,
R. J.
,
Fu
,
L. M.
, and
Hwang
,
C. C.
,
2001
, “
Electroosmotic Entry Flow in a Microchannel
,”
J. Colloid Interface Sci.
,
244
, pp.
173
179
.10.1006/jcis.2001.7847
24.
Owens
,
R. G.
,
2006
, “
A New Microstructure-Based Constitutive Model for Human Blood
,”
J. Non-Newtonian Fluid Mech.
,
140
, pp.
57
70
.10.1016/j.jnnfm.2006.01.015
25.
Vissink
,
A.
,
Waterman
,
H. A.
,
Gravermade
,
E. J.
,
Panders
,
A. K.
, and
Vermey
,
A.
,
1984
, “
Rheological Properties of Saliva Substitutes Containing Mucin, Carboxymethyl Cellulose or Polyethylenoxide
,”
J. Oral Pathol. Med.
,
13
, pp.
22
28
.10.1111/j.1600-0714.1984.tb01397.x
26.
Fam
,
H.
,
Bryant
,
J. T.
, and
Konopoulou
,
M.
,
2007
, “
Rheological Properties of Synovial Fluids
,”
Biorheology
,
44
, pp.
59
74
.
27.
Ishijima
,
S. A.
,
Okuno
,
M.
, and
Mohri
,
H.
,
1991
, “
Zeta Potential of Human X- and Y-Bearing Sperm
,”
Int. J. Androl.
,
14
, pp.
340
347
.10.1111/j.1365-2605.1991.tb01102.x
28.
Rykke
,
M.
,
Young
,
A.
,
Smistad
,
G.
,
Rolla
,
G.
, and
Karlsen
,
J.
,
1996
, “
Zeta Potentials of Human Salivary Micelle-Like Particles
,”
Colloids Surf., B
,
6
, pp.
51
56
.10.1016/0927-7765(95)01239-7
29.
Young
,
A.
,
Smistad
,
G.
,
Karlsen
,
J.
,
Rolla
,
G.
, and
Rykke
,
M.
,
1997
, “
Zeta Potentials of Human Enamel and Hydroxyapatite as Measured by the Coulter® DELSA 440
,”
Adv. Dent. Res.
,
11
, pp.
560
565
.10.1177/08959374970110042501
30.
Centisa
,
V.
, and
Vermette
,
P.
,
2008
, “
Physico-Chemical Properties and Cytotoxicity Assessment of PEG-Modified Liposomes Containing Human Hemoglobin
,”
Colloids Surf., B
,
65
, pp.
239
246
.10.1016/j.colsurfb.2008.04.009
31.
Schubert
,
S.
, and
Freitag
,
R.
,
2009
, “
Investigation of the Interaction Mechanism of the Recombinant Human Antibody MDJ8 and Its Fragments With Chromatographic Apatite Phases
,”
J. Chromatogr. A
,
1216
, pp.
3831
3840
.10.1016/j.chroma.2009.02.074
32.
Uskokovic
,
V.
,
Castiglione
,
Z.
,
Cubas
,
P.
,
Zhu
,
L.
,
Li
,
W.
, and
Habelitz
,
S.
,
2010
, “
Zeta-Potential and Particle Size Analysis of Human Amelogenins
,”
J. Dent. Res.
,
89
, pp.
149
153
.10.1177/0022034509354455
33.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
,
1998
, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
,
41
, pp.
4229
4249
.10.1016/S0017-9310(98)00125-2
34.
Siginer
,
D. A.
,
De Kee
,
D.
, and
Chhabra
,
R. P.
,
1999
,
Advances in the Flow and Rheology of Non-Newtonian Fluids
,
Elsevier
,
Amsterdam
.
35.
Phan-Thien
,
N.
, and
Tanner
,
R. I.
,
1977
, “
New Constitutive Equation Derived From Network Theory
,”
J. Non-Newtonian Fluid Mech.
,
2
, pp.
353
365
.10.1016/0377-0257(77)80021-9
36.
Bird
,
R. B.
,
Dotson
,
P. J.
, and
Johnson
,
N. L.
,
1980
, “
Polymer Solution Rheology Based on a Finitely Extensible Bead-Spring Chain Model
,”
J. Non-Newtonian Fluid Mech.
,
7
, pp.
213
235
.10.1016/0377-0257(80)85007-5
37.
Afonso
,
A. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2009
, “
Analytical Solution of Mixed Electro-Osmotic/Pressure Driven Flows of Viscoelastic Fluids in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
159
, pp.
50
63
.10.1016/j.jnnfm.2009.01.006
38.
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2010
, “
Viscous Dissipation Effects on Thermal Transport Characteristics of Combined Pressure and Electroosmotically Driven Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3782
3791
.10.1016/j.ijheatmasstransfer.2010.04.028
39.
Sadeghi
,
A.
,
Yavari
,
H.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2011
, “
Mixed Electroosmotically and Pressure Driven Flow With Temperature Dependent Properties
,”
J. Thermophys. Heat Transfer
,
25
, pp.
432
442
.10.2514/1.T3638
40.
Akulenko
,
L. D.
, and
Nesterov
,
S. V.
,
2005
,
High-Precision Methods in Eigenvalue Problems and Their Applications
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
41.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
42.
Haji-Sheikh
,
A.
,
Beck
,
J. V.
, and
Amos
,
D. E.
,
2008
, “
Axial Heat Conduction Effects in the Entrance Region of Parallel Plate Ducts
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5811
5822
.10.1016/j.ijheatmasstransfer.2008.04.056
43.
Sharma
,
A.
, and
Chakraborty
,
S.
,
2008
, “
Semi-Analytical Solution of the Extended Graetz Problem for Combined Electroosmotically and Pressure-Driven Microchannel Flows With Step-Change in Wall Temperature
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4875
4885
.10.1016/j.ijheatmasstransfer.2008.02.041
44.
Maynes
,
D.
, and
Webb
,
B. W.
,
2004
, “
The Effect of Viscous Dissipation in Thermally Fully Developed Electroosmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
, pp.
987
999
.10.1016/j.ijheatmasstransfer.2003.08.016
45.
Stokes
,
J. R.
, and
Davies
,
G. A.
,
2007
, “
Viscoelasticity of Human Whole Saliva Collected After Acid and Mechanical Stimulation
,”
Biorheology
,
44
, pp.
141
160
. Available at http://iospress.metapress.com/content/v6613867t572u007/
46.
Thurston
,
G. B.
,
1979
, “
Rheological Parameters for the Viscosity, Viscoelasticity and Thixotropy of Blood
,”
Biorheology
,
16
, pp.
149
162
.
47.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows, Fundamentals and Simulation
,
Springer
,
New York
.
48.
Broniarz-Press
,
L.
, and
Pralat
,
K.
,
2009
, “
Thermal Conductivity of Newtonian and Non-Newtonian Liquids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4701
4710
.10.1016/j.ijheatmasstransfer.2009.06.019
49.
Hoetink
,
A. E.
,
Faes
,
T. J. C.
,
Visser
,
K. R.
, and
Heethaar
,
R. M.
,
2004
, “
On the Flow Dependency of the Electrical Conductivity of Blood
,”
IEEE Trans. Biomed. Eng.
,
51
, pp.
1251
1261
.10.1109/TBME.2004.827263
50.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology: Engineering Applications
,
2nd ed.
,
Butterworth-Heinemann
,
Oxford
.
You do not currently have access to this content.