An analytical analysis is presented to explore the transport characteristics of electroosmotic flow and associated heat transfer of non-Newtonian power-law fluids in a circular microchannel. The approach selected here is based on the linearized Poisson–Boltzmann distribution equation to get analytical expressions for velocity and temperature profiles, the friction coefficient, and the fully-developed Nusselt number. The key parameters governing the problem include the flow behavior index, the length scale ratio (ratio of half channel diameter to Debye length), and the thermal scale ratio. The results reveal that increasing the length scale ratio tends to increase the friction coefficient. For surface heating, increasing the flow behavior index amplifies the temperature difference between the wall and the fluid, and thus the temperature distribution broadens; while the opposite trend is observed for surface cooling. Depending on the value of the thermal scale ratio, the fully-developed Nusselt number can be either increased or decreased by increasing the flow behavior index and/or the length scale ratio. The effect of flow behavior index on the Nusselt number vanishes as the length scale ratio approaches infinity.

References

References
1.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Boston, MA
.
2.
Arulanandam
,
S.
, and
Li
,
D.
,
2000
, “
Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping
,”
Colloids Surf. A
,
161
, pp.
89
102
.10.1016/S0927-7757(99)00328-3
3.
Erickson
,
D.
, and
Li
,
D.
,
2003
, “
Analysis of AC Electroosmotic Flows in a Rectangular Microchannel
,”
Langmuir
,
19
, pp.
5421
5430
.10.1021/la027035s
4.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
, pp.
2203
2221
.10.1016/S0020-7225(02)00143-X
5.
Tang
,
G. H.
,
Li
,
X. F.
, and
Tao
,
W. Q.
,
2010
, “
Microannular Electroosmotic Flow With the Axisymmetric Lattice Boltzmann Method
,”
J. Appl. Phys.
,
108
(
11
), p.
114903
.10.1063/1.3517437
6.
Wang
,
M.
, and
Kang
,
Q.
,
2010
, “
Modeling Electrokinetic Flows in Microchannels Using Coupled Lattice Boltzmann Methods
,”
J. Comput. Phys.
,
229
, pp.
728
744
.10.1016/j.jcp.2009.10.006
7.
Xuan
,
X. C.
, and
Li
,
D.
,
2005
, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interface Sci.
,
289
, pp.
291
303
.10.1016/j.jcis.2005.03.069
8.
Moghadam
,
A. J.
,
2012
, “
An Exact Solution of AC Electro-Kinetic-Driven Flow in a Circular Micro-Channel
,”
Eur. J. Mech. B/Fluids
,
34
, pp.
91
96
.10.1016/j.euromechflu.2012.03.006
9.
Soong
,
C. Y.
, and
Wang
,
S. H.
,
2003
, “
Theoretical Analysis of Electrokinetic Flow and Heat Transfer in a Microchannel Under Asymmetric Boundary Conditions
,”
J. Colloid Interface Sci.
,
265
(
1
), pp.
202
213
.10.1016/S0021-9797(03)00513-7
10.
Yang
,
C.
,
Li
,
D.
, and
Masliah
,
J. H.
,
1998
, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
,
41
, pp.
4229
4249
.10.1016/S0017-9310(98)00125-2
11.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully Developed Electroosmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1359
1369
.10.1016/S0017-9310(02)00423-4
12.
Chen
,
C.-H.
,
2009
, “
Thermal Transport Characteristics of Mixed Pressure and Electroosmotically Driven Flow in Micro- and Nanochannels With Joule Heating
,”
ASME J. Heat Transfer
,
131
, p.
022401
.10.1115/1.2994720
13.
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2010
, “
Viscous Dissipation Effects on Thermal Transport Characteristics of Combined Pressure and Electroosmotically Driven Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3782
3791
.10.1016/j.ijheatmasstransfer.2010.04.028
14.
Maynes
,
D.
, and
Webb
,
B. W.
,
2004
, “
The Effect of Viscous Dissipation in Thermally Fully-Developed Electroosmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
, pp.
987
999
.10.1016/j.ijheatmasstransfer.2003.08.016
15.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
,
2008
, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
, pp.
503
510
.10.1016/j.jcis.2008.06.028
16.
Bharti
,
R. P.
,
Harvie
,
D. J. E.
, and
Davidson
,
M. R.
,
2009
, “
Electroviscous Effects in Steady Fully Developed Flow of a Power-Law Liquid Through a Cylindrical Microchannel
,”
Int. J. Heat Fluid Flow
,
30
, pp.
804
811
.10.1016/j.ijheatfluidflow.2009.01.012
17.
Tang
,
G. H.
,
Li
,
X. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Electroosmotic Flow of Non-Newtonian Fluid in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
157
, pp.
133
137
.10.1016/j.jnnfm.2008.11.002
18.
Bakaraju
,
O. R.
,
2009
, “
Heat Transfer in Electroosmotic Flow of Power-Law Fluids in Microchannel
,” M.S. thesis,
Cleveland State University
,
Cleveland, OH
.
19.
Chen
,
C.-H.
,
2012
, “
Fully-Developed Thermal Transport in Combined Electroosmotic and Pressure Driven Flow of Power-Law Fluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
55
, pp.
2173
2183
.10.1016/j.ijheatmasstransfer.2011.12.022
20.
Shamshiri
,
M.
,
Khazaeli
,
R.
,
Ashrafizaadeh
,
M.
, and
Mortazavi
,
S.
,
2012
, “
Electroviscous and Thermal Effects on Non-Newtonian Liquid Flows Through Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
173–174
, pp.
1
12
.10.1016/j.jnnfm.2012.01.011
21.
Babaie
,
A.
,
Saidi
,
M. H.
, and
Sadeghi
,
A.
,
2012
, “
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Flow of Power-Law Fluids in a Slit Microchannel
,”
Int. J. Therm. Sci.
,
53
, pp.
71
79
.10.1016/j.ijthermalsci.2011.10.015
22.
Zhao
,
C.
, and
Yang
,
C.
,
2012
, “
Joule Heating Induced Heat Transfer for Electroosmotic Flow of Power-Law Fluids in a Microcapillary
,”
Int. J. Heat Mass Transfer
,
55
, pp.
2044
2051
.10.1016/j.ijheatmasstransfer.2011.12.005
23.
Chen
,
C.-H.
,
2011
, “
Electroosmotic Heat Transfer of Non-Newtonian Fluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
133
, p.
071705
.10.1115/1.4003573
24.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
.
25.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
,
Butterworth-Heinemann
,
Oxford, UK
.
26.
Tabeling
,
P.
,
2005
,
Introduction to Microfluidics
,
Oxford University
,
New York
.
27.
Hardt
,
S.
, and
Schonfeld
,
F.
,
2007
,
Microfluidic Technologies for Miniaturized Analysis Systems
,
Springer
,
New York
.
You do not currently have access to this content.