The prediction of electrically conducting fluid past a localized zone of applied magnetic field is the key for many practical applications. In this paper, the characteristics of flow and heat transfer (HI) for a liquid metal in a rectangular duct under a local magnetic field are investigated numerically using a three-dimensional model and the impact of some parameters, such as constrainment factor, κ, interaction parameter, N, and Reynolds number, Re, is also discussed. It is found that, in the range of Reynolds number 100 ≤ Re ≤ 900, the flow structures can be classified into the following four typical categories: no vortices, one pair of magnetic vortices, three pairs of vortices and vortex shedding. The simulation results indicate that the local heterogeneous magnetic field can enhance the wall-heat transfer and the maximum value of the overall increment of HI is about 13.6%. Moreover, the pressure drop penalty (ΔPpenalty) does not increasingly depend on the N for constant κ and Re. Thus, the high overall increment of HI can be obtained when the vortex shedding occurs.

References

References
1.
Jha
,
B. K.
, and
Apere
,
C. A.
,
2012
, “
Magnetohydrodynamic Transient Free-Convective Flow in a Vertical Annulus With Thermal Boundary Condition of the Second Kind
,”
ASME J. Heat Transfer
,
134
, p.
042502
.10.1115/1.4005109
2.
Kunstreich
,
S.
,
2003
, “
Electromagnetic Stirring for Continuous Casting—Part 1
,”
Int. J. Metallurgy
,
100
, pp.
395
408
.10.1051/metal:2003198
3.
Ali
,
F. M.
,
Nazar
,
R.
,
Arifin
,
N. M.
, and
Pop
,
I.
,
2011
, “
MHD Mixed Convection Boundary Layer Flow Toward a Stagnation Point on a Vertical Surface With Induced Magnetic Field
,”
ASME J. Heat Transfer
,
133
, p.
022502
.10.1115/1.4002602
4.
Thess
,
A.
,
Votyakov
,
E. V.
, and
Kolesnikov
,
Y.
,
2006
, “
Lorentz Force Velocimetry
,”
Phys. Rev. Lett.
,
96
, p.
164501
.10.1103/PhysRevLett.96.164501
5.
Kenjeres
,
S.
,
Ten Cate
,
S.
, and
Voesenek
,
C. J.
,
2011
, “
Vortical Structures and Turbulent Bursts Behind Magnetic Obstacles in Transitional Flow Regimes
,”
Int. J. Heat Fluid Flow
,
32
, pp.
510
528
.10.1016/j.ijheatfluidflow.2011.02.011
6.
Cuevas
,
S.
,
Smolentsev
,
S.
, and
Abdou
,
M.
,
2006
, “
On the Flow Past a Magnetic Obstacle
,”
J. Fluid Mech.
,
553
, pp.
227
252
.10.1017/S0022112006008810
7.
Hussam
,
W. K.
,
Thompson
,
M. C.
, and
Sheard
,
G. J.
,
2011
, “
Dynamics and Heat Transfer in a Quasi-Two-Dimensional MHD Flow Past a Circular Cylinder in a Duct at High Hartmann Number
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1091
1100
.10.1016/j.ijheatmasstransfer.2010.11.013
8.
Shercliff
,
J. A.
,
1962
,
The Theory of Electromagnetic Flow-Measurement
,
Cambridge University Press
,
Cambridge
.
9.
Roberts
,
P. H.
,
1967
,
An Introduction to Magnetohydrodynamics
,
Longmans
,
Green
, London.
10.
Moreau
,
R.
,
1990
,
Magnetohydrodynamics
,
Kluwer
, Academic Publishers, The Netherlands.
11.
Ni
,
M. J.
,
Munipalli
,
R.
,
Morley
,
N. B.
,
Huang
,
P.
, and
Abdou
,
M. A.
,
2007
, “
A Current Density Conservative Scheme for Incompressible MHD Flows at a Low Magnetic Reynolds Number. Part I: On a Rectangular Collocated Grid System
,”
J. Comput. Phys.
,
227
, pp.
174
204
.10.1016/j.jcp.2007.07.025
12.
Cuevas
,
S.
,
Smolentsev
,
S.
, and
Abdou
,
M.
,
2006
, “
Vorticity Generation in Creeping Flow Past a Magnetic Obstacle
,”
Phys. Rev. E
,
74
, p.
056301
.10.1103/PhysRevE.74.056301
13.
Votyakov
,
E. V.
,
Kolesnikov
,
Y.
,
Andreev
,
O.
,
Zienicke
,
E.
, and
Thess
,
A.
,
2007
, “
Structure of the Wake of a Magnetic Obstacle
,”
Phys. Rev. Lett.
,
98
, p.
144504
.10.1103/PhysRevLett.98.144504
14.
Votyakov
,
E. V.
,
Zienicke
,
E.
, and
Kolesnikov
,
Y. B.
,
2008
, “
Constrained Flow Around a Magnetic Obstacle
,”
J. Fluid Mech.
,
610
, pp.
131
156
.10.1017/S0022112008002590
15.
Andreev
,
O.
,
Kolesnikov
,
Y.
, and
Thess
,
A.
,
2007
, “
Experimental Study of Liquid Metal Channel Flow Under the Influence of a Nonuniform Magnetic Field
,”
Phys. Fluids
,
19
, p.
039902
.10.1063/1.2718400
16.
Votyakov
,
E. V.
, and
Kassinos
,
S. C.
,
2009
, “
On the Analogy Between Streamlined Magnetic and Solid Obstacles
,”
Phys. Fluids
,
21
, p.
097102
.10.1063/1.3231833
17.
Burr
,
U.
,
Barleon
,
L.
,
Muller
,
U.
, and
Tsinober
,
A.
,
2000
, “
Turbulent Transport of Momentum and Heat in Magnetohydrodynamic Rectangular Duct Flow With Strong Sidewall Jets
,”
J. Fluid Mech.
,
406
, pp.
247
279
.10.1017/S0022112099007405
18.
Yoon
,
H. S.
,
Chun
,
H. H.
,
Ha
,
M. Y.
, and
Lee
,
H. G.
,
2004
, “
A Numerical Study on the Fluid Flow and Heat Transfer Around a Circular Cylinder in an Aligned Magnetic Field
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4075
4087
.10.1016/j.ijheatmasstransfer.2004.05.015
19.
Huang
,
H. L.
,
Ying
,
A.
, and
Abdou
,
M. A.
,
2002
, “
3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Feld Induction Equations
,”
Fusion Eng. Des.
,
63-64
, pp.
361
368
.10.1016/S0920-3796(02)00261-2
20.
Huang
,
H. L.
, and
Zhou
,
X. M.
,
2009
, “
The Impact of Normal Magnetic Fields on Instability of Thermocapillary Convection in a Two-Layer Fluid System
,”
ASME J. Heat Transfer
,
131
, p.
062502
.10.1115/1.3084211
21.
Huang
,
H. L.
, and
Li
,
B.
,
2011
, “
Heat Transfer Enhancement of MHD Flow by Conducting Strips on the Insulating Wall
,”
ASME J. Heat Transfer
,
133
, p.
021902
.10.1115/1.4002436
You do not currently have access to this content.