The thermal performance of passive vapor chamber heat spreaders can be improved by enhancing evaporation from the internal wick structure. A wick structure that integrates conventional copper screen mesh and carbon nanotubes (CNTs) is developed and characterized for increased heat transport capability and reduced thermal resistance. The high-permeability mesh provides for a low-resistance liquid flow path while the carbon nanotubes, with their high thermal conductivity and large surface area, help reduce conduction and phase-change resistances. The wicks are fabricated by sintering a copper mesh on a multilayer substrate consisting of copper and molybdenum. CNTs are grown on to this mesh and a submicron layer of copper is evaporated on to the CNTs to improve wettability with water and wicking. Samples grown under varying degrees of positive bias voltage and varying thicknesses of post-CNT-growth copper evaporation are fabricated to investigate the effect of surface morphology variations. The resultant boiling curves indicate that micro/nano-integrated wicks fabricated with higher positive bias voltages during CNT synthesis coupled with thicker copper coatings produce lower wick thermal resistances. Notably, heat fluxes at the heater surface of greater than 500 W/cm2 were supported without a critical heat flux condition being reached.

References

References
1.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington, DC
.
2.
Reay
,
D.
, and
Kew
,
P.
,
2006
,
Heat Pipes
,
5th
ed.,
Butterwoth-Heinemann
, Oxford, UK.
3.
Chu
,
R. C.
,
2004
, “
The Challenges of Electronic Cooling: Past, Current and Future
,”
ASME J. Electron. Packag.
,
126
, pp.
491
500
.10.1115/1.1839594
4.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B. A.
,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
, pp.
801
815
.10.1109/TCAPT.2008.2001197
5.
Iverson
,
B. D.
,
Davis
,
T. W.
,
Garimella
,
S. V.
,
North
,
M. T.
, and
Kang
,
S. S.
,
2007
, “
Heat and Mass Transport in Heat Pipe Wick Structures
,”
J. Thermophys. Heat Transfer
,
21
, pp.
392
404
.10.2514/1.25809
6.
Cao
,
X. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
,
2002
, “
Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures
,”
J. Thermophys. Heat Transfer
,
16
, pp.
547
552
.10.2514/2.6730
7.
Mwaba
,
M. G.
,
Huang
,
X.
, and
Gu
,
J.
,
2006
, “
Influence of Wick Characteristics on Heat Pipe Performance
,”
Int. J. Energy Res.
,
30
, pp.
489
499
.10.1002/er.1164
8.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2009
, “
Analysis of the Wicking and Thin-Film Evaporation Characteristics of Microstructures
,”
ASME J. Heat Transfer
,
131
, p.
101001
.10.1115/1.3160538
9.
Vadakkan
,
U.
,
Chrysler
,
G. M.
,
Maveety
,
J.
, and
Tirumala
,
M.
,
2007
, “
A Novel Carbon Nano Tube Based Wick Structure for Heat Pipes/Vapor Chambers
,”
Proceedings of Semiconductor Thermal Measurement and Management Symposium
, (
SEMI-THERM
2007), San Jose, CA, pp. 102–104.10.1109/STHERM.2007.352394
10.
Ahn
,
H. S.
,
Sinha
,
N.
,
Zhang
,
M.
,
Banerjee
,
D.
,
Fang
,
S.
, and
Baughman
,
R. H.
,
2006
, “
Pool Boiling Experiments on Multiwalled Carbon Nanotube (MWCNT) Forests
,”
ASME J. Heat Transfer
,
128
, pp.
1335
1342
.10.1115/1.2349511
11.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2006
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
12.
Zhao
,
Y.
, and
Chen
,
C.-L.
,
2006
, “
An Investigation of Evaporation Heat Transfer in Sintered Copper Wicks With Microgrooves
,” Proceedings of 2006
ASME
International Mechanical Engineering Congress and Exposition, (IMECE 2006), Chicago, IL, pp. 177–181.10.1115/IMECE2006-15120
13.
Semenic
,
T.
, and
Catton
,
I.
,
2009
, “
Experimental Study of Biporous Wicks for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5113
5121
.10.1016/j.ijheatmasstransfer.2009.05.005
14.
Davis
,
W.
, and
Garimella
,
S. V.
,
2008
, “
Thermal Resistance Measurement Across a Wick Structure Using a Novel Thermosyphon Test Chamber
,”
Exp. Heat Transfer
,
21
, pp.
143
154
.10.1080/08916150701815853
15.
Weibel
,
J. A.
,
Garimella
,
S. V.
,
Murthy
,
J. Y.
, and
Altman
,
D. H.
,
2011
, “
Design of Integrated Nanostructured Wicks for High-Performance Vapor Chambers
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
, pp.
859
867
.10.1109/TCPMT.2011.2132721
16.
Cai
,
Q.
, and
Chen
,
C.-L.
,
2010
, “
Design and Test of a Carbon Nanotube Biwick Structure for High-Heat-Flux Phase Change Heat Transfer
,”
ASME J. Heat Transfer
,
132
, p.
052403
.10.1115/1.4000469
17.
Cai
,
Q.
, and
Chen
,
Y.-C.
,
2012
, “
Investigations of Biporous Wick Structure Dryout
,”
ASME J. Heat Transfer
,
134
, p.
021503
.10.1115/1.4005099
18.
Coso
,
D.
,
Srinivasan
,
V.
,
Lu
,
M.-C.
,
Chang
,
J.-Y.
, and
Majumdar
,
A.
,
2012
, “
Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes
,”
ASME J. Heat Transfer
,
134
, p.
101501
.10.1115/1.4006106
19.
Garg
,
R. K.
,
Kim
,
S. S.
,
Hash
,
D. B.
,
Fisher
,
T. S.
, and
Gore
,
J. P.
,
2008
, “
Effects of Feed Gas Composition and Catalyst Thickness on Carbon Nanotube and Nanofiber Synthesis by Plasma Enhanced Chemical Vapor Deposition
,”
J. Nanosci. Nanotechnol.
,
8
, pp.
3068
3076
.10.1166/jnn.2008.082
20.
Kim
,
S. S.
,
Amama
,
P. B.
, and
Fisher
,
T. S.
,
2010
, “
Preferential Biofunctionalization of Carbon Nanotubes Grown by Microwave Plasma-Enhanced CVD
,”
J. Phys. Chem. C
,
114
, pp.
9596
9602
.10.1021/jp912092n
21.
Amama
,
P. B.
,
Lan
,
C.
,
Cola
,
B. A.
,
Xu
,
X.
,
Reifenberger
,
R. G.
, and
Fisher
,
T. S.
,
2008
, “
Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown Under Direct Current Bias Voltage
,”
J. Phys. Chem. C
,
112
, pp.
19727
19733
.10.1021/jp807607h
22.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4204
4215
.10.1016/j.ijheatmasstransfer.2010.05.043
23.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New York
.
24.
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2012
, “
Visualization of Vapor Formation Regimes During Capillary-Fed Boiling in Sintered-Powder Heat Pipe Wicks
,”
Int. J. Heat Mass Transfer
,
55
, pp.
3498
3510
.10.1016/j.ijheatmasstransfer.2012.03.021
25.
Maschmann
,
M. R.
,
Amama
,
P. B.
,
Goyal
,
A.
,
Iqbal
,
Z.
, and
Fisher
,
T. S.
,
2006
, “
Freestanding Vertically Oriented Single-Walled Carbon Nanotubes Synthesized Using Microwave Plasma-Enhanced CVD
,”
Carbon
,
44
, pp.
2758
2763
.10.1016/j.carbon.2006.03.040
You do not currently have access to this content.