Radiation transfer from turbulent nonpremixed jet flames and plumes is important in many applications such as energy-efficient combustion systems, temperature sensitive pollutant control, and detection, control, and suppression of accidental fires. Combined spatial and temporal correlations of scalar values such as temperature and species concentrations affect the emitted radiation intensity. Spatiotemporal correlations and radiation intensity measurements downstream of the reacting parts of flames (plumes) have received limited attention. Motivated by this, planar time-dependent narrowband radiation intensity measurements are acquired of a turbulent nonpremixed flame and its plume using an infrared camera. Temporally and spatially correlated instantaneous realizations of local scalars and path integrated intensity values are calculated using a stochastic time and space series analysis, a narrowband radiation model, and the radiative transfer equation. The time-dependent infrared images reveal intermittent, low intensity regions in the plume characteristic of buoyancy-dominated transport. High radiation intensity structures are observed in the flame characteristic of momentum dominated flow and vorticity driven mixing. Normalized intensity fluctuations are nearly constant in the flame region, but increase by up to a factor of three in the plume. Normalized temporal correlations, power spectral density functions, and spatial correlations of the intensity are independent of the spatial location throughout both the flame and the plume. Spatial correlations of the radiation intensity exhibit approximately linear decay to half an integral length scale followed by an exponential decrement. The radiation intensity fluctuations remain spatially correlated up to separation distances two times larger than the integral length scale. Space–time cross correlations of the intensity fluctuations are measured for the first time and are shown to be more isotropic in comparison to the product of the spatial and temporal correlations. This suggests that a correction factor should be applied to the space–time correlation model in future stochastic calculations to account for the anisotropy. The infrared imaging technique, illustrated in this paper, is promising to be a useful qualitative and quantitative nonintrusive technique for studying both reacting and nonreacting flows.

References

References
1.
Frank
,
J. H.
,
Barlow
,
R. S.
, and
Lundquist
,
C.
,
2000
, “
Radiation and Nitric Oxide Formation in Turbulent Non-Premixed Jet Flames
,”
Proc. Combust. Inst.
,
28
, pp.
447
454
.10.1016/S0082-0784(00)80242-8
2.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Modeling of Radiation and Nitric Oxide Formation in Turbulent Nonpremixed Flames Using a Flamelet/Progress Variable Formulation
,”
Phys. Fluids
,
20
, p.
055110
.10.1063/1.2911047
3.
Kennedy
,
I. M.
,
1997
, “
Models of Soot Formation and Oxidation
,”
Prog. Energy Combust. Sci.
,
23
, pp.
95
132
.10.1016/S0360-1285(97)00007-5
4.
Brookes
,
S. J.
, and
Moss
,
J. B.
,
1999
, “
Predictions of Soot and Thermal Radiation Properties in Confined Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
116
, pp.
486
503
.10.1016/S0010-2180(98)00056-X
5.
Janicka
,
J.
, and
Sadiki
,
A.
,
2005
, “
Large Eddy Simulation of Turbulent Combustion Systems
,”
Proc. Combust. Inst.
,
30
, pp.
537
547
.10.1016/j.proci.2004.08.279
6.
Viskanta
,
R.
,
2005
,
Radiative Transfer in Combustion Systems: Fundamentals and Applications
,
Begell House, Inc.
,
New York
, pp.
251
260
.
7.
Gupta
,
A.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2009
, “
Large-Eddy Simulation of Turbulence-Radiation Interactions in a Turbulent Planar Channel Flow
,”
ASME J. Heat Transfer
,
131
, p.
061704
.10.1115/1.3085875
8.
Viskanta
,
R.
,
2008
, “
Overview of Some Radiative Transfer Issues in Simulation of Unwanted Fires
,”
Int. J. Therm. Sci.
,
47
, pp.
1563
1570
.10.1016/j.ijthermalsci.2008.01.008
9.
Kounalakis
,
M.
,
Gore
,
J. P.
, and
Faeth
,
G.
,
1988
, “
Turbulence/Radiation Interactions in Nonpremixed Hydrogen/Air Flames
,”
Proc. Combust. Inst.
,
22
, pp.
1281
1290
.10.1016/S0082-0784(89)80139-0
10.
Kounalakis
,
M.
,
Gore
,
J. P.
, and
Faeth
,
G.
,
1989
, “
Mean and Fluctuating Radiation Properties of Nonpremixed Turbulent Carbon Monoxide/Air Flames
,”
ASME J. Heat Transfer
,
111
, pp.
1021
1030
.10.1115/1.3250763
11.
Kounalakis
,
M.
,
Sivathanu
,
Y.
, and
Faeth
,
G.
,
1991
, “
Infrared Radiation Statistics of Nonluminous Turbulent Diffusion Flames
,”
ASME J. Heat Transfer
,
113
, pp.
437
445
.10.1115/1.2910580
12.
Zheng
,
Y.
,
Sivathanu
,
Y.
, and
Gore
,
J. P.
,
2002
, “
Measurements and Stochastic Time and Series Simulations of Spectral Radiation in a Turbulent Non-Premixed Flame
,”
Proc. Combust. Inst.
,
29
, pp.
1957
1963
.10.1016/S1540-7489(02)80238-3
13.
Zheng
,
Y.
,
Barlow
,
R. S.
, and
Gore
,
J. P.
,
2003
, “
Measurements and Calculations of Spectral Radiation Intensities for Turbulent Non-Premixed and Partially Premixed Flames
,”
ASME J. Heat Transfer
,
125
, pp.
678
686
.10.1115/1.1589502
14.
Zheng
,
Y.
,
2003
, “
Spectral and Total Radiation Properties of Turbulent Non-Luminous Jet Flames
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
15.
Zheng
,
Y.
,
Barlow
,
R.
, and
Gore
,
J. P.
,
2003
, “
Spectral Radiation Properties of Partially Premixed Turbulent Flames
,”
ASME J. Heat Transfer
,
125
, pp.
1065
1073
.10.1115/1.1621902
16.
da Silva
,
C. B.
,
Malico
,
I.
, and
Coelho
,
P. J.
,
2009
, “
Radiation Statistics in Homogeneous Isotropic Turbulence
,”
New J. Phys.
,
11
, p.
093001
.10.1088/1367-2630/11/9/093001
17.
Ji
,
J.
,
Sivathanu
,
Y.
, and
Gore
,
J. P.
,
2000
, “
Thermal Radiation Properties of Turbulent Lean Premixed Methane Air Flames
,”
Proc. Combust. Inst.
,
28
, pp.
391
398
.10.1016/S0082-0784(00)80235-0
18.
Sivathanu
,
Y. R.
,
Gore
,
J. P.
, and
Dolinar
,
J.
,
1991
, “
Transient Scalar Properties of Strongly Radiating Jet Flames
,”
Combust. Sci. Technol.
,
76
, pp.
45
66
.10.1080/00102209108951702
19.
Dylla
,
J.
,
Sivathanu
,
Y.
, and
Gore
,
J. P.
,
1993
, “
Multi-Variate Spatial Correlation Measurements in Turbulent Jet Flames
,”
31st Aerospace Sciences Meeting and Exhibit
, Paper No. AIAA 93-0801.
20.
Zheng
,
Y.
, and
Gore
,
J. P.
,
2005
, “
Measurements and Inverse Calculations of Spectral Radiation Intensities of a Turbulent Ethylene/Air Jet Flame
,”
Proc. Combust. Inst.
,
30
, pp.
727
734
.10.1016/j.proci.2004.08.255
21.
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
,
1992
, “
Transient Structure and Radiation Properties of Strongly Radiating Buoyant Flames
,”
ASME J. Heat Transfer
,
114
, pp.
659
665
.10.1115/1.2911331
22.
Biswas
,
K.
,
Zheng
,
Y.
,
Kim
,
C. H.
, and
Gore
,
J. P.
,
2007
, “
Stochastic Time Series Analysis of Pulsating Buoyant Pool Fires
,”
Proc. Combust. Inst.
,
31
, pp.
2581
2588
.10.1016/j.proci.2006.07.234
23.
Karpetis
,
A.
, and
Barlow
,
R.
,
2002
, “
Measurements of Scalar Dissipation in a Turbulent Piloted Methane/Air Jet Flame
,”
Proc. Combust. Inst.
,
29
, pp.
1929
1935
.10.1016/S1540-7489(02)80234-6
24.
Kirby
,
B. J.
, and
Hanson
,
R. K.
,
1999
, “
Planar Laser-Induced Fluorescence Imaging of Carbon Monoxide Using Vibrational (Infrared) Transitions
,”
Appl. Phys. B
,
69
, pp.
505
507
.10.1007/s003400050843
25.
Kirby
,
B. J.
, and
Hanson
,
R. K.
,
2000
, “
Imaging of CO and CO2 Using Infrared Planar Laser-Induced Fluorescence
,”
Proc. Combust. Inst.
,
28
, pp.
253
259
.10.1016/S0082-0784(00)80218-0
26.
Turner
,
J. S.
,
1969
, “
Buoyant Plumes and Thermals
,”
Annu. Rev. Fluid Mech.
,
1
, pp.
29
44
.10.1146/annurev.fl.01.010169.000333
27.
List
,
E. J.
,
1982
, “
Turbulent Jets and Plumes
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
189
212
.10.1146/annurev.fl.14.010182.001201
28.
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
,
1993
, “
Total Radiative Heat-Loss in Jet Flames From Single-Point Radiative Flux Measurements
,”
Combust. Flame
,
94
(
3
), pp.
265
270
.10.1016/0010-2180(93)90073-C
29.
Schefer
,
R. W.
,
Houf
,
W. G.
,
Bourne
,
B.
, and
Colton
,
J.
,
2006
, “
Spatial and Radiative Properties of an Open_flame Hydrogen Plume
,”
Int. J. Hydrogen Energy
,
31
, pp.
1332
1340
.10.1016/j.ijhydene.2005.11.020
30.
Blunck
,
D. L.
, and
Gore
,
J. P.
,
2011
, “
Study of Narrowband Radiation Intensity Measurements From Subsonic Exhaust Plumes
,”
J. Propul. Power
,
27
, pp.
227
234
.10.2514/1.47962
31.
Bergmann
,
V.
,
Meier
,
W.
,
Wolff
,
D.
, and
Stricker
,
W.
,
1998
, “
Application of Spontaneous Raman and Rayleigh Scattering and 2D LIF for the Characterization of a Turbulent CH4/H2/N2 Jet Diffusion Flame
,”
Appl. Phys. B
, pp.
489
502
.10.1007/s003400050424
32.
Meier
,
W.
,
Barlow
,
R. S.
,
Chen
,
Y. L.
, and
Chen
,
J. Y.
,
2000
, “
Raman/Rayleigh/LIF Measurements in a Turbulent CH4/H2/N2 Jet Diffusion Flame: Experimental Techniques and Turbulence-Chemistry Interaction
,”
Combust. Flame
,
123
, pp.
326
343
.10.1016/S0010-2180(00)00171-1
33.
Schneider
,
C.
,
Dreizler
,
A.
,
Janicka
,
J.
, and
Hassel
,
E. P.
,
2003
, “
Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon_fuelled Jet Flames
,”
Combust. Flame
,
135
, pp.
85
190
.10.1016/S0010-2180(03)00150-0
34.
International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames
,
2001
,
Sandia National Laboratories
, http://www.sandia.gov/TNF/
35.
Modest
,
M.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
San Diego, CA
.
36.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
7
.10.1016/0894-1777(88)90043-X
37.
Faeth
,
G. M.
,
Kounalakis
,
M. E.
, and
Sivathanu
,
Y. R.
,
1991
, “
Stochastic Aspects of Turbulent Combustion Processes
,”
Chemom. Intell. Lab. Syst.
,
10
, pp.
199
210
.10.1016/0169-7439(91)80049-V
38.
Grosshandler
,
W.
,
1993
, “
RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment
,” NIST Technical Note 1402.
39.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, NY
, pp.
96
110
.
40.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2000
,
Random Data Analysis and Measurement Procedures
,
John Wiley and Sons, Inc.
,
New York
.
41.
Jones
,
B. G.
,
Planchon
,
H. P.
, and
Hammersley
,
R. J.
,
1973
, “
Turbulent Space-Time Correlation Measurements in a Plane Two-Stream Mixing Layer at Velocity Ratio 0.3
,”
AIAA 11th Aerospace Sciences Meeting
,
Washington, DC
, Paper No. AIAA 73-225.
You do not currently have access to this content.