It is proposed that a conductive thick plate is placed between a heat source and a cold flowing fluid to improve the forced convection cooling performance. Detailed numerical work is carried out to determine the optimal thickness of the conductive thick plate which minimizes the peak temperature. It is shown that the thick plate significantly reduces the excess temperature of heat sources, by way of conducting the heat current in an optimal manner. It is shown that the reduction in the excess temperature of heat sources depends upon the Reynolds number of the fluid flow and the material thermal conductivity. Correlations for the optimum plate thickness and reduction in excess temperature of heat sources are presented, which could be useful for the practitioners.

References

References
1.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing for Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transfer
,
35
, pp.
3259
3264
.10.1016/0017-9310(92)90213-C
3.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
4.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.10.1115/1.4007159
5.
da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2005
, “
Constructal Multi-Scale Structures With Asymmetric Heat Sources of Finite Thickness
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2662
2672
.10.1016/j.ijheatmasstransfer.2005.01.028
6.
Hajmohammadi
,
M. R.
,
Nourazar
,
S. S.
,
Campo
,
A.
, and
Poozesh
,
S.
,
2013
, “
Optimal Discrete Distribution of Heat Flux Elements for In-Tube Laminar Forced Convection
,”
Int. J. Heat Fluid Flow
,
40
, pp.
89
96
.10.1016/j.ijheatfluidflow.2013.01.010
7.
Chen
,
S.
,
Liu
,
Y.
,
Chan
,
S. F.
,
Leung
,
C. W.
, and
Chan
,
T. L.
,
2001
, “
Experimental Study of Optimum Spacing Problem in the Cooling of Simulated Electronics Package
,”
Int. J. Heat Mass Transfer
,
37
, pp.
251
257
.10.1007/s002310000168
8.
da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Plate With Laminar Forced Convection
,”
Int. J. Heat Mass Transfer
,
47
, pp.
203
214
.10.1016/j.ijheatmasstransfer.2003.07.007
9.
Hajmohammadi
,
M. R.
,
Shirani
,
E.
,
Salimpour
,
M. R.
, and
Campo
,
M. R.
,
2012
, “
Constructal Placement of Unequal Heat Sources on a Plate Cooled by Laminar Forced Convection
,”
Int. J. Therm. Sci.
,
60
, pp.
13
22
.10.1016/j.ijthermalsci.2012.04.025
10.
Trevino
,
C.
, and
Linan
,
A.
,
1984
, “
External Heating of a Flat Plate in a Convective Flow
,”
Int. J. Heat Mass Transfer
,
7
, pp.
1067
1073
.10.1016/0017-9310(84)90122-4
11.
Juncu
,
Gh.
,
2008
, “
Unsteady Conjugate Forced Convection Heat/Mass Transfer From a Finite Flat Plate
,”
Int. J. Therm. Sci.
,
47
, pp.
972
984
.10.1016/j.ijthermalsci.2007.09.002
12.
Luikov
,
A. V.
,
1974
, “
Conjugated Convective Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
17
, pp.
257
265
.10.1016/0017-9310(74)90087-8
13.
Payvar
,
P.
,
1977
, “
Convective Heat Transfer to Laminar Flow Over a Plate of Finite Thickness
,”
Int. J. Heat Mass Transfer
,
20
, pp.
431
433
.10.1016/0017-9310(77)90165-X
14.
Dorfman
,
A.
, and
Renner
,
Z.
,
2009
, “
Review: Conjugate Problems in Convective Heat Transfer
,”
Math. Probl. Eng.
,
2009
, p.
927350
.10.1155/2009/927350
15.
Van Doormal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.10.1080/01495728408961817
You do not currently have access to this content.