Helisoma trivolvis pond snail embryos are known for their rotation, which is induced by beating of cilia at the embryo's surface. A common hypothesis links this behavior to enhancing oxygen transfer to the embryo's surface. In this paper, this hypothesis is quantified, and the effect of the rotation on the supply of oxygen to an embryo, which is approximately spherical in shape, is studied. To the best of our knowledge, this is the first research presenting a quantitative study on the effect of an embryo's rotation on facilitating gaseous exchange between the embryo and the environment.

References

References
1.
Supatto
,
W.
, and
Vermot
,
J.
,
2011
, “
From Cilia Hydrodynamics to Zebrafish Embryonic Development
,”
Forces Tension Dev.
,
95
, pp.
33
66
.10.1016/B978-0-12-385065-2.00002-5
2.
Cole
,
A.
,
Mashkournia
,
A.
, and
Parries
,
S.
,
2002
, “
Regulation of Early Embryonic Behavior by Nitric Oxide in the Pond Snail Helisoma Trivolvis
,”
J. Exp. Biol.
,
205
, pp.
3143
3152
.
3.
Diefenbach
,
T. J.
,
Koehncke
,
N. K.
, and
Goldberg
,
J. I.
,
1991
, “
Characterization and Development of Rotational Behavior in Helisoma Embryos—Role of Endogenous Serotonin
,”
J. Neurobiol.
,
22
, pp.
922
934
.10.1002/neu.480220905
4.
Burggren
,
W.
,
1985
, “
Gas-Exchange, Metabolism, and Ventilation in Gelatinous Frog Egg Masses
,”
Physiol. Zool.
,
58
, pp.
503
514
.
5.
Hunter
,
T.
, and
Vogel
,
S.
,
1986
, “
Spinning Embryos Enhance Diffusion Through Gelatinous Egg Masses
,”
J. Exp. Mar. Biol. Ecol.
,
96
, pp.
303
308
.10.1016/0022-0981(86)90209-1
6.
Goldberg
,
J. I.
,
Doran
,
S. A.
, and
Shartau
,
R. B.
,
2008
, “
Integrative Biology of an Embryonic Respiratory Behaviour in Pond Snails: The ‘Embryo Stir-Bar Hypothesis’
,”
J. Exp. Biol.
,
211
, pp.
1729
1736
.10.1242/jeb.016014
7.
Seymour
,
R. S.
, and
Bradford
,
D. F.
,
1995
, “
Respiration of Amphibian Eggs
,”
Physiol. Zool.
,
68
, pp.
1
25
.
8.
Shartau
,
R. B.
,
Harris
,
S.
, and
Boychuk
,
E. C.
,
2010
, “
Rotational Behaviour of Encapsulated Pond Snail Embryos in Diverse Natural Environments
,”
J. Exp. Biol.
,
213
, pp.
2086
2093
.10.1242/jeb.038091
9.
Bickley
,
W.
,
1938
, “
The Secondary Flow due to a Sphere Rotating in a Viscous Fluid
,”
Philos. Mag.
,
25
, pp.
746
752
.
10.
Hatem
,
N.
,
Philippe
,
C.
, and
Mbow
,
C.
,
1996
, “
Numerical Study of Mixed Convection Around a Sphere Rotating About Its Vertical Axis in a Newtonian Fluid at Rest and Subject to a Heat Flux
,”
Numer. Heat Transfer Part A
,
29
, pp.
397
415
.10.1080/10407789608913799
11.
Hillesdon
,
A. J.
,
Pedley
,
T. J.
, and
Kessler
,
J. O.
,
1995
, “
The Development of Concentration Gradients in a Suspension of Chemotactic Bacteria
,”
Bull. Math. Biol.
,
57
, pp.
299
344
.
12.
Hillesdon
,
A. J.
, and
Pedley
,
T. J.
,
1996
, “
Bioconvection in Suspensions of Oxytactic Bacteria: Linear Theory
,”
J. Fluid Mech.
,
324
, pp.
223
259
.10.1017/S0022112096007902
You do not currently have access to this content.