Helisoma trivolvis pond snail embryos are known for their rotation, which is induced by beating of cilia at the embryo's surface. A common hypothesis links this behavior to enhancing oxygen transfer to the embryo's surface. In this paper, this hypothesis is quantified, and the effect of the rotation on the supply of oxygen to an embryo, which is approximately spherical in shape, is studied. To the best of our knowledge, this is the first research presenting a quantitative study on the effect of an embryo's rotation on facilitating gaseous exchange between the embryo and the environment.
Issue Section:
Technical Briefs
References
1.
Supatto
, W.
, and Vermot
, J.
, 2011
, “From Cilia Hydrodynamics to Zebrafish Embryonic Development
,” Forces Tension Dev.
, 95
, pp. 33
–66
.10.1016/B978-0-12-385065-2.00002-52.
Cole
, A.
, Mashkournia
, A.
, and Parries
, S.
, 2002
, “Regulation of Early Embryonic Behavior by Nitric Oxide in the Pond Snail Helisoma Trivolvis
,” J. Exp. Biol.
, 205
, pp. 3143
–3152
.3.
Diefenbach
, T. J.
, Koehncke
, N. K.
, and Goldberg
, J. I.
, 1991
, “Characterization and Development of Rotational Behavior in Helisoma Embryos—Role of Endogenous Serotonin
,” J. Neurobiol.
, 22
, pp. 922
–934
.10.1002/neu.4802209054.
Burggren
, W.
, 1985
, “Gas-Exchange, Metabolism, and Ventilation in Gelatinous Frog Egg Masses
,” Physiol. Zool.
, 58
, pp. 503
–514
.5.
Hunter
, T.
, and Vogel
, S.
, 1986
, “Spinning Embryos Enhance Diffusion Through Gelatinous Egg Masses
,” J. Exp. Mar. Biol. Ecol.
, 96
, pp. 303
–308
.10.1016/0022-0981(86)90209-16.
Goldberg
, J. I.
, Doran
, S. A.
, and Shartau
, R. B.
, 2008
, “Integrative Biology of an Embryonic Respiratory Behaviour in Pond Snails: The ‘Embryo Stir-Bar Hypothesis’
,” J. Exp. Biol.
, 211
, pp. 1729
–1736
.10.1242/jeb.0160147.
Seymour
, R. S.
, and Bradford
, D. F.
, 1995
, “Respiration of Amphibian Eggs
,” Physiol. Zool.
, 68
, pp. 1
–25
.8.
Shartau
, R. B.
, Harris
, S.
, and Boychuk
, E. C.
, 2010
, “Rotational Behaviour of Encapsulated Pond Snail Embryos in Diverse Natural Environments
,” J. Exp. Biol.
, 213
, pp. 2086
–2093
.10.1242/jeb.0380919.
Bickley
, W.
, 1938
, “The Secondary Flow due to a Sphere Rotating in a Viscous Fluid
,” Philos. Mag.
, 25
, pp. 746
–752
.10.
Hatem
, N.
, Philippe
, C.
, and Mbow
, C.
, 1996
, “Numerical Study of Mixed Convection Around a Sphere Rotating About Its Vertical Axis in a Newtonian Fluid at Rest and Subject to a Heat Flux
,” Numer. Heat Transfer Part A
, 29
, pp. 397
–415
.10.1080/1040778960891379911.
Hillesdon
, A. J.
, Pedley
, T. J.
, and Kessler
, J. O.
, 1995
, “The Development of Concentration Gradients in a Suspension of Chemotactic Bacteria
,” Bull. Math. Biol.
, 57
, pp. 299
–344
.12.
Hillesdon
, A. J.
, and Pedley
, T. J.
, 1996
, “Bioconvection in Suspensions of Oxytactic Bacteria: Linear Theory
,” J. Fluid Mech.
, 324
, pp. 223
–259
.10.1017/S0022112096007902Copyright © 2013 by ASME
You do not currently have access to this content.