Linear and nonlinear Rayleigh–Bénard convections with variable heat source (sink) are studied analytically using the Fourier series. The strength of the heat source is characterized by an internal Rayleigh number, RI, whose effect is to decrease the critical external Rayleigh number. Linear theory involving an autonomous system (linearized Lorenz model) further reveals that the critical point at pre-onset can only be a saddle point. In the postonset nonlinear study, analysis of the generalized Lorenz model leads us to two other critical points that take over from the critical point of the pre-onset regime. Classical analysis of the Lorenz model points to the possibility of chaos. The effect of RI is shown to delay or advance the appearance of chaos depending on whether RI is negative or positive. This aspect is also reflected in its effect on the Nusselt number. The Lyapunov exponents provide useful information on the closing in and opening out of the trajectories of the solution of the Lorenz model in the cases of heat sink and heat source, respectively. The Ginzburg-Landau models for the problem are obtained via the 3-mode and 5-mode Lorenz models of the paper.

References

References
1.
Drazin
,
P. G.
, and
Reid
,
D. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
2.
Platten
,
J. K.
, and
Legros
,
J. C.
,
1984
,
Convection in Liquids
,
Springer
,
Berlin
.
3.
Straughan
,
B.
,
2004
,
The Energy Method, Stability, and Nonlinear Convection
,
2nd ed.
,
Springer-Verlag
,
New York
.
4.
Getling
,
A. V.
,
2001
,
Rayleigh-Benard Convection: Structures and Dynamics
,
World Scientific Press
,
Singapore
.
5.
Roberts
,
P. H.
,
1967
, “
Convection in Horizontal Layers With Internal Heat Generation
,”
J. Fluid Mech.
,
30
, pp.
33
49
.10.1017/S0022112067001284
6.
Thirlby
,
R.
,
1970
, “
Convection in an Internally Heated Layer
,”
J. Fluid Mech.
,
44
, pp.
673
693
.10.1017/S0022112070002082
7.
McKenzie
,
D. P.
,
Roberts
,
J. M.
, and
Weiss
,
N. O.
,
1974
, “
Convection in the Earth's Mantle: Towards a Numerical Simulation
,”
J. Fluid Mech.
,
62
, pp.
465
538
.10.1017/S0022112074000784
8.
Tveitereid
,
M.
, and
Palm
,
E.
,
1976
, “
Convection Due to Internal Heat Sources
,”
J. Fluid Mech.
,
76
(
3
), pp.
481
499
.10.1017/S002211207600075X
9.
Clever
,
R. M.
,
1977
, “
Heat Transfer and Stability Properties of Convection Rolls in an Internally Heated Fluid Layer
,”
Z. Angew Math. Phys.
,
28
, pp.
585
597
.10.1007/BF01601337
10.
Riahi
,
N.
,
1984
, “
Nonlinear Convection in a Horizontal Layer With an Internal Heat Source
,”
J. Phys. Soc. Jpn
,
53
, pp.
4169
4178
.10.1143/JPSJ.53.4169
11.
Riahi
,
D. N.
, and
Hsui
,
A. T.
,
1986
, “
Nonlinear Double Diffusive Convecton With Local Heat Source and Solute Sources
,”
Int. J. Eng. Sci.
,
24
, pp.
529
544
.10.1016/0020-7225(86)90043-1
12.
Krishnamurti
,
R.
,
1997
, “
Convection Induced by Selective Absorption of Radiation: A Laboratory Model of Conditional Instability
,”
Dyn. Atmos. Oceans
,
27
, pp.
367
382
.10.1016/S0377-0265(97)00020-1
13.
Tse
,
K. L.
, and
Chasnov
,
J. R.
,
1998
, “
A Fourier Hermite Pseudo Spectral Method for Penetrative Convection
,”
J. Comput. Phys.
142
, pp.
489
505
.10.1006/jcph.1998.5946
14.
Chasnov
,
J. R.
, and
Tse
,
K. L.
,
2001
, “
Turbulent Penetrative Convection With an Internal Heat Source
,”
Fluid Dyn. Res.
,
28
, pp.
397
421
.10.1016/S0169-5983(00)00037-X
15.
Zhang
,
K. K.
, and
Schubert
,
G.
,
2002
, “
From Penetrative Convection to Teleconvection
,”
Astrophys. J.
,
572
, pp.
461
476
.10.1086/340288
16.
Straughan
,
B.
,
2002
, “
Sharp Global Nonlinear Stability for Temperature-Dependent Viscosity Convection
,”
Proc. R. Soc. London A
,
458
, pp.
1773
1782
.10.1098/rspa.2001.0945
17.
Hill
,
A. A.
,
2004
, “
Penetrative Convection Induced by the Absorption of Radiation With a Nonlinear Internal Heat Source
,”
Dyn. Atmos. Oceans
,
38
, pp.
57
67
.10.1016/j.dynatmoce.2004.03.002
18.
Siddheshwar
,
P. G.
,
Sekhar
,
G. N.
, and
Jayalatha
,
G.
,
2010
, “
Analytical Study of Convection in Jeffreys Liquid With a Heat Source
,”
Proceedings of the 37th International and 4th National Conference on Fluid Mechanics and Fluid Power
, Paper No. FMFP10HT07,
481
, pp.
1
10
.
19.
Veronis
,
G.
,
1966
, “
Motions at Subcritical Values of the Rayleigh Number in a Rotating Fluid
,”
J. Fluid Mech.
,
24
, pp.
545
554
.10.1017/S0022112066000818
20.
Siddheshwar
,
P. G.
,
Sekhar
,
G. N.
, and
Jayalatha
,
G.
,
2010
, “
Effect of Time-Periodic Vertical Oscillations of the Rayleigh-Bénard System on Nonlinear Convection in Viscoelastic Liquids
,”
J. Non-Newtonian Fluid Mech.
,
165
, pp.
1412
1418
.10.1016/j.jnnfm.2010.07.008
21.
Hill
,
A. A.
, and
Malashetty
,
M. S.
,
1981
, “
An Operative Method to Obtain Sharp Nonlinear Stability for Systems With Spatially Dependent Coefficients
,”
Proc. R. Soc. A
,
468
, pp.
323
336
.10.1098/rspa.2011.0137
22.
Busse
,
F. H.
,
1982
, “
Thermal Convection in Rotating Systems
,”
Proceedings of U.S. National Congress of Applied Mechanics, American Society of Mechanical Engineers
, pp.
299
305
.
23.
Knobloch
,
E. S.
,
1998
, “
Rotating Convection: Recent Developments
,”
Int. J. Eng. Sci.
,
36
, pp.
1421
1460
.10.1016/S0020-7225(98)00041-X
24.
Krishnamurthi
,
R.
, and
Howard
,
L. N.
,
1981
, “
Large-Scale Flow Generation in Turbulent Convection
,”
Proc. Natl. Acad. Sci. U.S.A.
,
78
(
4
), pp.
1981
1985
.10.1073/pnas.78.4.1981
25.
Rajagopal
,
K. R.
,
Ruzicka
,
M.
, and
Srinivasa
,
A. R.
,
1996
, “
On the Oberbeck—Boussinesq Approximation
,”
Math. Models Meth. Appl. Sci.
,
06
, pp.
1157
1167
.10.1142/S0218202596000481
26.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
,
Oxford
.
27.
Lorenz
,
E. N.
,
1963
, “
Deterministic Non-Periodic Flow
,”
J. Atmos. Sci.
,
20
, pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
28.
Siddheshwar
,
P. G.
, and
Radhakrishna
,
D.
,
2012
, “
Linear and Nonlinear Electroconvection Under AC Electric Field
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
2883
2895
.10.1016/j.cnsns.2011.11.009
29.
Laroze
,
D.
,
Siddheshwar
,
P. G.
, and
Pleiner
,
H.
,
2013
, “
Chaotic Convection in a Ferrofluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
9
), pp.
2436
2447
.10.1016/j.cnsns.2013.01.016
30.
Simmons
,
G. F.
,
1974
,
Differential Equations With Applications and Historical Notes
,
McGraw-Hill, Inc.
,
New York
.
31.
Chen
,
Z. M.
, and
Price
,
W. G.
,
2006
, “
On the Relation Between Rayleigh—Bénard Convection and Lorenz System
,”
Chaos, Solitons Fractals
,
28
(
2
), pp.
571
578
.10.1016/j.chaos.2005.08.010
32.
Cheung
,
F. B.
,
1980
, “
Heat Source-Driven Thermal Convection at Arbitrary Prandtl Number
,”
J. Fluid Mech.
,
97
(
4
), pp.
743
768
.10.1017/S0022112080002789
33.
Watson
,
P. M.
,
1968
, “
Classical Cellular Convection With a Spatial Heat Source
,”
J. Fluid Mech.
,
32
, pp.
399
411
.10.1017/S0022112068000807
34.
Sparrow
,
C.
,
1981
,
The Lorenz Equations: Bifurcations, Chaos and Strange Attractors
,
Springer
,
New York
.
35.
Siddheshwar
,
P. G.
,
2010
, “
A Series Solution for the Ginzburg-Landau Equation With a Time-Periodic Coefficient
,”
Appl. Math.
,
1
(
6
), pp.
542
554
.10.4236/am.2010.16072
36.
Bhadauria
,
B. S.
,
Siddheshwar
,
P. G.
, and
Suthar
,
Om. P.
,
2012
, “
Nonlinear Thermal Instability in a Rotating Viscous Fluid Layer Under Temperature/Gravity Modulation
,”
ASME J. Heat Transfer
,
134
, p.
102502
.10.1115/1.4006868
37.
Bhadauria
,
B. S.
,
Bhatia
,
P. K.
, and
Debnath
,
L.
,
2009
, “
Weakly Non-Linear Analysis of Rayleigh-Bénard Convection With Time-Periodic Heating
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
58
65
.10.1016/j.ijnonlinmec.2008.08.009
38.
Alligood
,
K. T.
,
Sauer
,
T. D.
, and
Yorke
,
J. A.
,
1997
Chaos
,
Springer
,
New York
.
39.
Kapitaniak
,
T.
,
2000
,
Chaos for Engineers
,
Springer
,
New York
.
You do not currently have access to this content.