A liquid-to-air membrane energy exchanger (LAMEE) is an energy exchanger that allows heat and moisture transfer between air and salt solution flows through a semipermeable membrane. For the first time, a novel small-scale single-panel LAMEE test facility is used to experimentally investigate the effect of the direction of heat and mass transfers for the air and salt solution flows, and the effect of different salt solution types and concentrations on the LAMEE effectiveness. The data for steady-state effectiveness of the LAMEE are compared to the simulation results of a numerical model. Two studies are conducted; first a study based on different heat and mass transfer directions (four test cases), and second a study focused on the influence of solution types and concentration on LAMEE performance. For the first study, NTU = 3 and four different heat capacity ratios (i.e., Cr* = 1, 3, 5, 7) are used, with a LiCl salt solution in the exchanger. Mass and energy balances for all the test cases and the repeatability of the experimental data for the air cooling and dehumidifying test case show that the experimental data are repeatable and within an acceptable uncertainty range. The results show increasing effectiveness with increasing Cr*, and good agreement between the numerical and experimental results for both air cooling and dehumidifying and air heating and humidifying test cases. In the second study, two different salt solutions (i.e., LiCl and MgCl2), and three different concentrations for the LiCl solution (i.e., 25%, 30%, and 35%) are selected to investigate the effect of different salt solution types and concentrations on the performance of the LAMEE. A maximum difference of 10% is obtained for the LAMEE total effectiveness data with the different salt solution types and concentrations. The results show that both the salt solution type and concentration affect the LAMEE effectiveness, and changing the concentration is one way to control the supply air outlet humidity ratio.

References

References
1.
Jiang
,
P. X.
,
Fan
,
M. H.
,
Si
,
G. S.
, and
Ren
,
Z. P.
,
2001
, “
Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1039
1051
.10.1016/S0017-9310(00)00169-1
2.
Longo
,
G. A.
,
2008
, “
Refrigerant R134a Condensation Heat Transfer and Pressure Drop Inside a Small Brazed Plate Heat Exchanger
,”
Int. J. Refrigeration
,
31
, pp.
780
789
.10.1016/j.ijrefrig.2007.11.017
3.
Bejan
,
A.
,
2002
, “
Dendritic Constructal Heat Exchanger With Small-Scale Crossflows and Larger-Scales Counterflows
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4607
4620
.10.1016/S0017-9310(02)00165-5
4.
Ozden
,
E.
, and
Tari
,
I.
,
2010
, “
Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger
,”
Energy Convers. Manage.
,
51
, pp.
1004
1014
.10.1016/j.enconman.2009.12.003
5.
Rogiers
,
F.
, and
Baelmans
,
M.
,
2010
, “
Towards Maximal Heat Transfer Rate Densities for Small-Scale High Effectiveness Parallel-Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
53
, pp.
605
614
.10.1016/j.ijheatmasstransfer.2009.10.036
6.
Zhang
,
L. Z.
,
2011
An Analytical Solution to Heat and Mass Transfer in Hollow Fiber Membrane Contactors for Liquid Desiccant Dehumidifier
,”
J. Heat Transfer
,
133
, p.
092001
.10.1115/1.4003900
7.
Zhang
,
L. Z.
,
Huang
,
S. M.
, and
Pei
,
L. X.
,
2012
, “
Conjugate Heat and Mass Transfer in a Cross-Flow Hollow Fiber Membrane Contactor for Liquid Desiccant Air Dehumidification
,”
Int. J Heat Mass Transfer
,
55
, pp.
8061
8072
.10.1016/j.ijheatmasstransfer.2012.08.041
8.
Zhang
,
L. Z.
,
Huang
,
S. M.
,
Chi
,
J. H.
, and
Pei
,
L. X.
,
2012
, “
Conjugate Heat and Mass Transfer in a Hollow Fiber Membrane Module for Liquid Desiccant Air Dehumidification: A Free Surface Model Approach
,”
Int. J Heat Mass Transfer
,
55
, pp.
3789
3799
.10.1016/j.ijheatmasstransfer.2012.03.034
9.
Zhang
,
L. Z.
,
2012
, “
Coupled Heat and Mass Transfer in an Application-Scale Cross-Flow Hollow Fiber Membrane Module for Air Humidification
,”
Int. J Heat Mass Transfer
,
55
, pp.
5861
5869
.10.1016/j.ijheatmasstransfer.2012.05.083
10.
Zhang
,
L. Z.
, and
Huang
,
S. M.
,
2011
, “
Coupled Heat and Mass Transfer in a Counter Flow Hollow Fiber Membrane Module for Air Humidification
,”
Int. J Heat Mass Transfer
,
54
, pp.
1055
1063
.10.1016/j.ijheatmasstransfer.2010.11.025
11.
Ge
,
G.
,
Ghadiri Moghaddam
,
D.
,
Namvar
,
R.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2012
, “
Analytical Model Based Performance Evaluation and Optimization of Run-Around Membrane Energy Exchanger Systems
,”
Energy Build.
,
62
, pp.
248
257
.10.1016/j.enbuild.2013.03.017
12.
Abe
,
O. O.
,
Wang
,
Y. H.
,
Simonson
,
C. J.
,
Besant
,
R. W.
, and
Shang
,
W.
,
2006
, “
Transient Temperature Measurements and Characteristics for Temperature Sensors and Energy Wheels
,”
ASHRAE Trans.
,
112
, pp.
76
88
.
13.
Wang
,
Y. H.
,
Besant
,
R. W.
,
Simonson
,
C. J.
, and
Shang
,
W.
,
2005
, “
Transient Humidity for Flow Through an Energy Wheel
,”
ASHRAE Trans.
,
111
, pp.
353
369
.
14.
Abe
,
O. O.
,
Besant
,
R. W.
,
Simonson
,
C. J.
, and
Shang
,
W.
,
2006
, “
Relationship Between Energy Wheel Speed and Effectiveness and Its Transient Response, Part I: Mathematical Development of the Characteristic Time Constants and Their Relationship With Effectiveness
,”
ASHRAE Trans.
,
112
, pp.
89
102
.
15.
Abe
,
O. O.
,
Besant
,
R. W.
,
Simonson
,
C. J.
, and
Shang
,
W.
,
2006
, “
Relationship Between Energy Wheel Speed and Effectiveness and Its Transient Response, Part II: Comparison Between Mathematical Model Predictions and Experimental Measurements and Uncertainty Analysis
,”
ASHRAE Trans.
,
112
, pp.
103
115
.
16.
Ghadiri Moghaddam
,
D.
,
Ge
,
G.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2012
, “
Small-scale Single-Panel Liquid-to-Air Membrane Energy Exchanger (LAMEE) Test Facility Development, Commissioning and Evaluating the Steady-State Performance
,”
Energy Build
. (submitted),
17.
Namvar
,
R.
,
Pyra
,
D.
,
Ge
,
G.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2012
, “
Transient Characteristics of a Liquid-to-Air Membrane Energy Exchanger (LAMEE) Experimental Data With Correlations
,”
Int. J. Heat Mass Transfer
,
55
, pp.
6682
6694
.10.1016/j.ijheatmasstransfer.2012.06.077
18.
Seyed-Ahmadi
,
M.
,
Erb
,
B.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2009
. “
Transient Behavior of Run-Around Heat and Moisture Exchanger System. Part І: Model Formulation and Verification
,”
Int. J. Heat Mass Transfer
,
52
, pp.
6000
6011
.10.1016/j.ijheatmasstransfer.2009.07.012
19.
Seyed-Ahmadi
,
M.
,
Erb
,
B.
,
Simonson
,
C. J.
, and
Besant
,
R.W.
,
2009
, “
Transient Behavior of Run-Around Heat and Moisture Exchanger System. Part IІ: Sensitivity Studies for a Range of Initial Conditions
,”
Int. J. Heat Mass Transfer
,
52
, pp.
6012
6020
.10.1016/j.ijheatmasstransfer.2009.06.037
20.
Simonson
,
C. J.
, and
Besant
,
R. W.
,
1999
, “
Energy Wheel Effectiveness: Part I—Development of Dimensionless Groups
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2161
2170
.10.1016/S0017-9310(98)00325-1
21.
AHRI STANDARD 1060
,
2005
, “
Performance Rating for Air-to-Air Exchangers for Energy Recovery Ventilation Equipment
,” Air-Conditioning & Refrigeration Institute, Arlington, VA.
22.
Fan
,
H.
,
Simonson
,
C. J.
,
Besant
,
R. W.
, and
Shang
,
W.
,
2006
, “
Performance of a Run-Around System for HVAC Heat and Moisture Transfer Applications Using Cross-Flow Plate Exchangers Coupled With Aqueous Lithium Bromide
,”
HVAC&R Research
,
12
, pp.
313
336
.10.1080/10789669.2006.10391181
23.
Erb
,
B.
,
Seyed-Ahmadi
,
M.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2009
, “
Experimental Measurements of a Run-Around Membrane Energy Exchanger (RAMEE) With Comparison to a Numerical Model
,”
ASHRAE Trans.
,
115
, pp.
689
705
.
24.
Afshin
,
M.
,
2010
, “
Selection of the Liquid Desiccant in a Run-Around Membrane Energy Exchanger
,” M.Sc. thesis, Mechanical Engineering Department, University of Saskatchewan, SK, Canada.
25.
Khizir
,
M.
,
Gazi
,
M.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2010
, “
Performance Testing of a Counter-Cross-Flow Run-Around Membrane Energy Exchanger (RAMEE) System for HVAC Applications
,”
Energy Build.
,
42
, pp.
1139
1147
.10.1016/j.enbuild.2010.02.005
26.
Simonson
,
C. J.
,
Ciepliski
,
D. L.
, and
Besant
,
R. W.
,
1999
Determining the Performance of Energy Wheels: Part I-Experimental and Numerical Method
,”
ASHRAE Trans.
,
105
, pp.
174
187
.
27.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2006
,
Theory and Design for Mechanical Measurements
,
4th ed.
,
Wiley
,
New York
.
28.
Seyed-Ahmadi
,
M.
,
2008
, “
Modeling the Transient Behavior of a Run-Around Heat and Moisture Exchanger System
,” M.Sc. thesis, Mechanical Engineering Department, University of Saskatchewan, SK, Canada.
29.
Hemingson
,
H. B.
,
2010
, “
The Impacts of Outdoor Air Conditions and Non-Uniform Exchanger Channels on a Run-Around Membrane Energy Exchanger
,” M.Sc. thesis, Mechanical Engineering Department, University of Saskatchewan, SK, Canada.
30.
Akbari
,
S.
,
Hemingson
,
B. H.
,
Beriault
,
D.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2011
, “
Application of Neural Networks to Predict the Steady State Performance of a Run-Around Membrane Energy Exchanger
,”
Int. J. Heat Mass Transfer
,
55
, pp.
1628
1641
.10.1016/j.ijheatmasstransfer.2011.11.019
31.
LePoudre
,
P. P.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2011
, “
Channel Flow With Sinusoidal Screen Insert
,”
19th Annual Conference of the CFD Society of Canada, CFD 2011
,
Montreal, Canada
.
32.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1985
,
Fundamental of Heat and Mass Transfer
,
2nd ed.
,
Wiley
,
New York
.
33.
Niu
,
J. L.
, and
Zhang
L. Z.
,
2001
, “
Membrane-Based Enthalpy Exchanger: Material Consideration and Clarification of Moisture Resistance
,”
J Membr. Sci.
,
189
,
179
191
.10.1016/S0376-7388(00)00680-3
34.
Larson
,
M. D.
,
2006
, “
The Performance of Membrane in a Newly Proposed Run-Around Heat and Moisture Exchanger
,” M.Sc. thesis, Mechanical Engineering Department, University of Saskatchewan, SK, Canada.
You do not currently have access to this content.