Louvered fins perform better than any other geometry in accomplishing the task of enhancing heat transfer of compact heat exchangers without prohibitive costs and pressure drops. For this reason, they are widely adopted for automotive applications. However, in order to improve louvered-fin compact heat exchangers, it is strongly required to understand how louvered fins behave regarding both heat transfer and pressure drop taking into account industrial constraints. For this purpose, numerical simulations based on the equations of thermofluid dynamics have been developed for this study. In particular, boundary heat flux and pressure distributions have been analyzed along the louvered-fin assembly and around the louvers, and even the effects of the flat portions (central and lateral louvers) have been investigated. In particular, the effects of the main geometrical parameters, such as fin pitch, louver pitch, and louver angle, have been evaluated by performing simulations on 40 different configurations. The results show that there is not one optimum configuration for the heat exchangers. Finally, a detailed procedure for the optimization of louvered-fin compact heat exchangers, considering industrial constraints is suggested according to multiple regression technique of the numerical results.

References

References
1.
Beauvais
,
F. N.
,
1965
, “
An Aerodynamic Look at Automobile Radiators
,” SAE Paper No. 650470.
2.
Davenport
,
C. J.
,
1980
, “
Heat Transfer and Fluid Flow in Louvered Triangular Ducts
,” Ph.D. thesis, Lancaster Polytechnic, Coventry, UK.
3.
Kajino
,
M.
, and
Hiramatsu
,
M.
,
1987
, “
Research and Development of Automotive Heat Exchangers
,”
Heat Transfer in High Technology and Power Engineering
,
W. J.
Wang
and
Y.
Mori
, eds.,
Hemisphere
,
Washington, DC
, pp.
420
432
.
4.
Ikuta
,
S.
,
Sasaki
,
Y.
,
Tanaka
K.
,
Takagi
,
M.
, and
Himeno
,
R.
,
1990
,
Numerical Analysis of Heat Transfer Around Louver Assemblies
,” SAE Technical Paper No. 900081.
5.
Bellows
,
K. D.
,
1997
,
Flow Visualization of Louvered-Fin Heat Exchangers
, Air Conditioning and Refrigeration Center, University of Illinois, IL, ACRC Technical Report No. 124.
6.
Yuan
,
Y.
,
Jackson
,
A.
, and
Nelson
,
M.
,
2001
, “
CFD Simulation of Flow and Heat Transfer in Airways
,” SAE Technical Paper No. 2001-01-1712.
7.
Lyman
,
A. C.
,
Stephan
,
R. A.
,
Thole
,
K. A.
,
Zhang
,
L. W.
,
Memory
,
S. B.
,
2002
, “
Scaling of Heat Transfer Coefficients Along Louvered Fins
,”
Exp. Therm. Fluid Sci.
,
26
(
5
), pp.
547
563
.10.1016/S0894-1777(02)00163-2
8.
T'Joen
,
C.
,
Huisseune
,
H.
,
Caniere
,
H.
,
Steeman
,
H. J.
,
Willockx
,
A.
, and
De Paepe
,
M.
,
2011
, “
Interaction Between Mean Flow and Thermo-Hydraulic Behaviour in Inclined Louvered Fins
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
826
837
.10.1016/j.ijheatmasstransfer.2010.10.020
9.
Chang
,
Y.-J.
, and
Wang
,
C.-C.
,
1997
, “
A Generalized Heat Transfer Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
533
544
.10.1016/0017-9310(96)00116-0
10.
Wang
,
C.-C.
,
Lee
,
C.-J.
,
Chang
,
C.-T.
, and
Lin
,
S.-P.
,
1998
, “
Heat Transfer and Friction Correlation for Compact Louvered FM-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1945
1956
.10.1016/S0017-9310(98)00302-0
11.
Chang
,
Y.-J.
,
Hsu
,
K.-C.
,
Lin
,
Y.-T.
, and
Wang
,
C.-C.
,
2000
, “
A Generalized Friction Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2237
2243
.10.1016/S0017-9310(99)00289-6
12.
Dong
,
J.
,
Chen
,
J.
,
Chen
,
Z.
,
Zhang
,
W.
, and
Zhou
,
Y.
,
2007
, “
Heat Transfer and Pressure Drop Correlations for the Multi-Louvered Fin Compact Heat Exchangers
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1506
1515
.10.1016/j.enconman.2006.11.023
13.
Nuntaphan
,
A.
,
Vithayasai
,
S.
,
Kiatsiriroat
,
T.
, and
Wang
,
C. C.
,
2007
, “
Effect of Inclination Angle on Free Convention Thermal Performance of Louver Finned Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
361
366
.10.1016/j.ijheatmasstransfer.2006.06.008
14.
Kang
,
H. C.
, and
Jun
,
G. W.
,
2011
, “
Heat Transfer and Flow Resistance Characteristics of Louver Fin Geometry for Automobile Applications
,”
ASME J. Heat Transfer
,
133
, p.
101802
.10.1115/1.4004169
15.
Zhang
,
X.
, and
Tafti
,
D. K.
,
2002
, “
Flow Efficiency in Multi-Louvered Fins
,” Air Conditioning and Refrigeration Center, University of Illinois, Urbana IL, ACRC Technical Report No. 197.
16.
Webb
,
R. L.
,
1990
, “
The Flow Structure in the Louvered Fin Heat Exchanger Geometry
,” SAE Technical Paper No. 900722.
17.
EUROCLIM, 1995 “Common Technical Regulations for Air-Conditioning Components,” EUROCLIM Synthesis Report, Project Action 4.
18.
Beamer
,
H. E.
,
Ghosh
,
D.
,
Bellows
,
K. D.
,
Huang
,
L. J.
, and
Jcobi
,
A. M.
,
1998
, “
Applied CFD and Experiment for Automotive Compact Heat Exchanger Development
,” SAE Technical Paper No. 980426.
19.
STAR-CCM+ 6.04.014
,
2011
,
Computer Software
,
CD-Adapco
,
Melville NY
.
20.
STAR-CCM+ 6.04.014
,
2011
,
User Guide
,
CD-Adapco
,
Melville, NY
.
21.
Perocchio
,
D.
,
2011
, “
PFC Condenser Performance Database, Analysis and Correlation With Jodon Test Results
,” DENSO Internal Report R&D, Poirino (TO), Italy, Report No. 11040/RDP168.
22.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Transfer
,
133
, p.
051701
.10.1115/1.4003080
23.
Jang
,
J.-Y.
, and
Tsai
,
Y.-C.
,
2011
, “
Optimum Louver Angle Design for a Louvered Fin Heat Exchanger
,”
Int. J. Phys. Sci.
,
6
(
28
), pp.
6422
6438
.10.5897/IJPS11.475
You do not currently have access to this content.