Molecular Dynamics (MD) simulation is carried out to investigate the normal and explosive boiling of thin film adsorbed on a metal substrate whose surface is structured by an array of nanoscale spherical particles. The molecular system is comprised of the liquid and vapor argon as well as a copper wall. The nanostructures have spherical shape with uniform diameters while the thickness of liquid film is constant. The effects of transvers and longitudinal distances as well as the diameter of nanoparticles are analyzed. The simulation is started from an initial configuration for three phases (liquid argon, vapor argon and solid wall); after equilibrating the system at 90 K, the wall is heated suddenly to a higher temperature that is well beyond the critical temperature of argon. Two different superheat degrees are selected: a moderately high temperature of 170 K for normal evaporation and much higher temperature 290 K for explosive boiling. By monitoring the space and time dependences of temperature and density as well as net evaporation rate, the normal and explosive boiling process on a flat surface with and without nanostructures are investigated. The results show that the nanostructure has significant effect on evaporation/boiling of thin film. The degrees of superheat and size of nanoparticles have significant effects on the trajectories of particles and net evaporation rate. For the cases with nanostructure, liquid responds very quickly and the number of evaporation molecules increases with increasing the size of particles from 1 to 2 nm while it decreases for d = 3 nm.

References

1.
Kunugi
,
T.
,
2004
, “
Heat Transfer Enhancement by Nano-Scale Structure Formed on Surface: Experimental and Molecular Dynamics Study
,”
Proceedings of the First International Symposium on Micro and Nano Technology (ISMNT)
, Paper No. XXV II-3-01.
2.
Kunugi
,
T.
, and
Muko
,
K.
, “
New Heat-Exchange and Heat-Transfer Methods Between Solids and Fluids
,” Patent No. 2002-297088, JP.
3.
Nagayama
,
G.
,
Kawagoe
,
M.
, and
Tsuruta
,
T.
,
2007
, “
Molecular Dynamics Simulations of Interfacial Heat and Mass Transfer at Nanostructured Surface
,”
Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems
, Paper No. MNC2007-21410, pp.
1
10
.
4.
Hosono
,
E.
,
Fujihara
,
S.
,
Honma
,
I.
,
Zhou
,
H.
,
2005
, “
Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process
,”
J. Am. Chem. Soc.
,
127
(
39
), pp.
13458
13459
.10.1021/ja053745j
5.
Nagayama
,
G.
,
Shi-iki
,
S.
, and
Tsuruta
,
T.
,
2007
, “
Effects of Naostructures on Surface Wettability: A Molecular Dynamics Study
,”
Trans. Jpn. Soc. Mech. Eng. B
,
73
(
728
), pp.
1084
1091
.10.1299/kikaib.73.1084
6.
Blossey
,
R.
,
2003
, “
Self-Cleaning Surfaces—Virtual Realities
,”
Nature Mater.
,
2
(
5
), pp.
301
306
.10.1038/nmat856
7.
Moronuki
,
A.
,
Takayama
,
A.
, and
Kaneko
,
A.
,
2004
, “
Design of Surface Texture of the Control of Wettability
,”
Trans. Jpn. Soc. Mech. Eng. B
,
70
(
693
), pp.
1244
1249
.10.1299/kikaib.70.1244
8.
Takahashi
,
K.
,
2004
, “
Porous Silicon as a Super Hydrophobic Microchannel Surface
,”
Proceedings of the First International Symposium on Micro and Nano Technology(ISMNT)
,
Honolulu, Hawaii
, Paper No. XXX I-2-03.
9.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.-I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.10.1002/smll.200700991
10.
Ranjan
,
R.
,
Garimella
,
S. V.
,
Murthy
,
J. Y.
, and
Yazawa
,
K.
,
2011
, “
Assessment of Nanostructured Capillary Wicks for Passive, Two-Phase Heat Transport
,”
Nanoscale Microscale Thermophys. Eng.
,
15
, pp.
179
194
.10.1080/15567265.2011.597492
11.
Ahn
,
H. S.
,
Sathyamurthi
,
V.
, and
Banerjee
,
D.
,
2009
, “
Pool Boiling Experiments on a Nano-Structured Surface
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
156
165
.10.1109/TCAPT.2009.2013980
12.
Ujereh
,
O. S.
,
Mudawar
,
I.
,
Amama
,
P. B.
,
Fisher
,
T. S.
, and
Ou
,
W.
,
2005
, “
Enhanced Pool Boiling Using Carbon Nanotube Arrays on a Silicon Surface
,”
Proceedings of ASME-IMECE
,
Orlando, FL
, Nov. 5–11, Paper No. IMECE2005-80065.
13.
Ahn
,
H. S.
,
Sinha
,
N.
,
Zhang
,
M.
,
Banerjee
,
D.
,
Feng
,
S.
, and
Baughman
,
R.
,
2006
, “
Pool Boiling Experiments on Multiwalled Carbon Nanotube (MWCNT) Forests
,”
ASME J. Heat Transfer
,
128
, pp.
1335
1342
.10.1115/1.2349511
14.
Singh
,
N.
,
Sathyamurthy
,
V.
,
Peterson
,
W.
,
Arendt
,
J.
, and
Banerjee
,
D.
,
2010
, “
Flow Boiling Enhancement on a Horizontal Heater Using Carbon Nanotube Coatings
,”
Int. J. Heat Fluid Flow.
,
31
, pp.
201
207
.10.1016/j.ijheatfluidflow.2009.11.002
15.
Chen
,
R.
,
Lu
,
M.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nanoletters
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
16.
Ujereh
,
U.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer.
,
50
, pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
17.
Yi
,
P.
,
Poulikakos
,
D.
,
Walther
,
J.
, and
Yadigaroglu
,
G.
,
2002
, “
Molecular Dynamics Simulation of Vaporization on an Ultra-Thin Liquid Argon Layer on a Surface
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2087
2100
.10.1016/S0017-9310(01)00310-6
18.
Nagayama
,
G.
,
Tsuruta
,
T.
, and
Cheng
,
P.
,
2006
, “
Molecular Dynamics Simulation on Bubble Formation in a Nanochannel
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4437
4443
.10.1016/j.ijheatmasstransfer.2006.04.030
19.
Novak
,
B.
,
Maginn
,
E. J.
, and
McCready
,
M. J.
,
2008
, “
An Atomistic Simulation Study of the Role of Asperities and Indentations on Heterogeneous Bubble Nucleation
,”
ASME J. Heat Transfer
,
130
, pp.
042411
042420
.10.1115/1.2818771
20.
Maruyama.
S.
, and
Kimura
,
T.
,
1999
, “
A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface
,”
5th ASME/JSME Thermal Engineering Conference
,
San Diego, CA
, Paper No. AJTE 99-6511.
21.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2008
, “
Molecular Dynamic Simulation of Platinum Heater and Associated Nano-Scale Liquid Argon Film Evaporation and Colloidal Adsorption Characteristics
,”
J. Colloid Interface Sci.
,
328
(
1
), pp.
134
146
.10.1016/j.jcis.2008.09.018
22.
Avedisian
,
C. T.
,
1985
, “
Bubble Growth in Superheated Liquid Droplets
,”
Encyclopedia of Fluid Mechanics
, Vol.
3
, Gas-Liquid Flows,
N. P.
Cheremisino
, ed.,
Gulf Publishing
,
Houston, TX
, pp.
130
190
.
23.
Reid
,
R.
,
1983
, “
Rapid Phase Transition From Liquid to Vapor
,”
Adv. Chem. Eng.
,
12
, pp.
105
208
.10.1016/S0065-2377(08)60252-5
24.
Shepherd
,
J. E.
, and
Sturtevant
,
B.
,
1982
, “
Rapid Evaporation at the Superheat Limit
,”
J. Fluid Mech.
,
121
, pp.
379
402
.10.1017/S0022112082001955
25.
Chitavnis
,
S. M.
,
1987
, “
Explosive Vaporization of Small Droplets by a High-Energy Laser Beam
,”
J. Appl. Phys.
,
62
(
11
), pp.
4387
4393
.10.1063/1.339073
26.
Jia
,
T.
,
Zhang
,
Y.
,
Ma
,
H. B.
, and
Chen
,
J. K.
,
2012
, “
Investigation of the Characteristics of Heat Current in a Nanofluid Based on Molecular Dynamics Simulation
,”
Appl. Phys. A.
,
108
, pp.
537
544
.10.1007/s00339-012-7019-y
27.
Kang
,
H.
,
Zhang
,
Y.
,
Yang
,
M.
, and
Li
,
L.
,
2012
, “
Molecular Dynamics Simulation on Effect of Nanoparticle Aggregation on Transport Properties of a Nanofluid
,”
ASME J. Nanotechnol. Eng. Med.
,
3
, p.
021001
.10.1115/1.4007044
28.
Kang
,
H.
,
Zhang
,
Y.
,
Yang
,
M.
, and
Li
,
L.
,
2012
, “
Nonequilibrium Molecular Dynamics Simulation of Coupling Between Nanoparticles and Base-Fluid in a Nanofluid
,”
Appl. Phys. A.
,
108
, pp.
521
524
.10.1007/s00339-012-6977-4
29.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2010
, “
Heat Transfer Characteristics and Pressure Variation in a Nanoscale Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3335
3345
.10.1016/j.ijheatmasstransfer.2010.02.030
30.
Yu
,
J.
, and
Wang
,
H.
,
2012
, “
A Molecular Dynamics Investigation on Evaporation of Thin Liquid Films
,”
Int. J. Heat Mass Transfer
,
55
, pp.
1218
1225
.10.1016/j.ijheatmasstransfer.2011.09.035
You do not currently have access to this content.