This work presents the single- and two-phase results of a parametric study investigating the performance of oblique jet arrays impinging at 45 deg on a 3.63 cm2 square copper heater surface using R-245fa. It was found that the parameters that most impact heat transfer changed as the system progressed from single- to two-phase flow behavior. The single-phase performance was governed by the jet geometry and the volumetric flow rate, while in the two-phase region, heat transfer performance was primarily affected by the fluid conditions and the heat flux applied. A single-phase correlation was developed to capture the low heat flux response, and the two-phase results were well-correlated by a pool boiling correlation. A new general correlation for jet impingement heat transfer with phase change is presented combining these correlations. Critical heat flux (CHF) data were compared with literature correlations and a new correlation was developed for arrays of boiling jets.

References

1.
Oh
,
C. H.
,
Leinhard
V. J. H.
,
Younis
,
H. F.
,
Dahbura
,
R. S.
, and
Michels
,
D.
,
1998
, “
Liquid Jet-Array Cooling Modules for High Heat Fluxes
,”
AIChE J.
,
44
(
4
), pp.
769
779
.10.1002/aic.690440402
2.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
3.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
4.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.10.1115/1.2836304
5.
Goldstein
,
R. J.
, and
Franchett
,
M. E.
,
1988
, “
Heat Transfer From a Flat Surface to an Oblique Impinging Jet
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
84
90
.10.1115/1.3250477
6.
Yan
,
X.
, and
Saniei
,
N.
,
1997
, “
Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate
,”
Int. J. Heat Fluid Flow
,
18
(
6
), pp.
591
599
.10.1016/S0142-727X(97)00051-9
7.
Stevens
,
J.
, and
Webb
,
B.
,
1991
, “
The Effect of Inclination on Local Heat Transfer Under an Axisymmetric, Free Liquid Jet
,”
Int. J. Heat Mass Transfer
,
34
(
4-5
), pp.
1227
1236
.10.1016/0017-9310(91)90031-9
8.
Sparrow
,
E. M.
, and
Lovell
,
B. J.
,
1980
, “
Heat Transfer Characteristics of an Obliquely Impinging Circular Jet
,”
ASME J. Heat Transfer
,
102
(
2
), pp.
202
209
. 10.1115/1.3244261
9.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1993
, “
Jet Impingement Boiling
,”
Adv. Heat Transfer
,
23
, pp.
1
132
.10.1016/S0065-2717(08)70005-4
10.
Ma
,
C.
, and
Bergles
,
A.
,
1986
, “
Jet Impingement Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1095
1101
.10.1016/0017-9310(86)90140-7
11.
Mudawar
,
I.
, and
Wadsworth
,
D. C.
,
1991
, “
Critical Heat Flux From a Simulated Chip to a Confined Rectangular Impinging Jet of Dielectric Liquid
,”
Int. J. Heat Mass Transfer
,
34
(
6
), pp.
1465
1479
.10.1016/0017-9310(91)90289-Q
12.
Monde
,
M.
, and
Katto
,
Y.
,
1978
, “
Burnout in a High Heat-Flux Boiling System With an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
21
(
3
), pp.
295
305
.10.1016/0017-9310(78)90122-9
13.
Vader
,
D. T.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1992
, “
Convective Nucleate Boiling on a Heated Surface Cooled by an Impinging, Planar Jet of Water
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
152
160
.10.1115/1.2911241
14.
Jiji
,
L. M.
, and
Dagan
,
Z.
,
1988
, “
Experimental Investigation of Single Phase Multi-Jet Impingement Cooling of an Array of Microelectronic Heat Sources
,”
Cooling Technology for Electronic Equipment
, pp.
333
351
.
15.
Nonn
,
T.
,
Dagan
,
Z.
, and
Jiji
,
L. M.
,
1988
, “
Boiling Jet Impingement Cooling of Simulated Microelectronic Heat Sources
,” Winter Annual Meeting, Vol. 88-WA/EEP-3, ASME, pp.
1
9
.
16.
Copeland
,
D.
,
1998
, “
Single-Phase and Boiling Cooling of a Small Heat Source by Multiple Nozzle Jet Impingement
,”
Int. J. Microelectron. Packag.
,
1
, pp.
105
113
.
17.
Ruch
,
M. A.
, and
Holman
,
J. P.
,
1975
, “
Boiling Heat Transfer to a Freon-113 Jet Impinging Upward Onto a Flat, Heated Surface
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
51
60
.10.1016/0017-9310(75)90007-1
18.
Shedd
,
T. A.
,
2007
, “
Next Generation Spray Cooling: High Heat Flux Management in Compact Spaces
,”
Heat Transfer Eng.
,
28
(
2
), pp.
87
92
.10.1080/01457630601023245
19.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
, “
Uncertainty of Measured Variable by Monte Carlo Method
,”
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
John Wiley & Sons, Inc.
, New York, Chap. 2, pp.
57
58
.
20.
Klein
,
S. A.
,
2012
,
Engineering Equation Solver
, FChart Software, Madison, WI, www.fchart.com.
21.
Buchanan
,
R. A.
,
2012
, “
Two-Phase Jet Impingement
,” M.S. thesis, University of Wisconsin–Madison, Madison, WI.
22.
NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, last accessed June 19,
2012
23.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
,
2010
, “
Microjet Array Single-Phase and Flow Boiling Heat Transfer With R134a
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5027
5034
.10.1016/j.ijheatmasstransfer.2010.07.062
24.
Copeland
,
D.
,
1996
, “
Enhancement of Direct Liquid Cooling of Electronics
,” Ph.D. thesis, Tokyo Institute of Technology, Tokyo.
25.
Dano
,
B.
,
Liburdy
,
J.
, and
Kanokjaruvijit
,
K.
,
2005
, “
Flow Characteristics and Heat Transfer Performances of a Semi-Confined Impinging Array of Jets: Effect of Nozzle Geometry
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
691
701
.10.1016/j.ijheatmasstransfer.2004.07.046
26.
Fabbri
,
M.
, and
Dhir
,
V. K.
,
2005
, “
Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
760
769
.10.1115/1.1924624
27.
Gardon
,
R.
, and
Cobonpue
,
J.
,
1962
, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on It
,” International Heat Transfer Conference, ASME, pp.
454
460
.
28.
Garimella
,
S. V.
, and
Schroeder
,
V. P.
,
2001
, “
Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
165
172
.10.1115/1.1371923
29.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
30.
Jeffers
,
N. M. R.
,
Punch
,
J.
,
Walsh
,
E. J.
, and
McLean
,
M.
,
2010
, “
Heat Transfer From Novel Target Surface Structures to a 3 × 3 Array of Normally Impinging Water Jets
,”
ASME J. Therm. Sci. Eng Appl.
,
2
(
4
), p.
041004
.10.1115/1.4003220
31.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
32.
Michna
,
G. J.
,
Browne
,
E. A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2011
, “
The Effect of Area Ratio on Microjet Array Heat Transfer
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1782
1790
.10.1016/j.ijheatmasstransfer.2010.12.038
33.
Pan
,
Y.
, and
Webb
,
B. W.
,
1995
, “
Heat Transfer Characteristics of Arrays of Free-Surface Liquid Jets
,”
ASME J. Heat Transfer
,
117
, pp.
878
883
.10.1115/1.2836305
34.
Robinson
,
A.
, and
Schnitzler
,
E.
,
2007
, “
An Experimental Investigation of Free and Submerged Miniature Liquid Jet Array Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
1
13
.10.1016/j.expthermflusci.2006.12.006
35.
Tie
,
P.
,
Li
,
Q.
, and
Xuan
,
Y.
,
2011
, “
Investigation on the Submerged Liquid Jet Arrays Impingement Cooling
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2757
2763
.10.1016/j.applthermaleng.2011.04.048
36.
Womac
,
D. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
,
1994
, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Multiple Circular Liquid Jets
,”
ASME J. Heat Transfer
,
116
, pp.
482
486
.10.1115/1.2911423
37.
Yonehara
,
N.
, and
Ito
,
I.
,
1983
, “
Cooling Characteristics of Impinging Multiple Water Jets on a Horizontal Plane
,” Technology Reports of Kansai University, Vol.
24
, pp.
267
281
.
38.
Arpaci
,
V. S.
, and
Larsen
,
P. S.
,
1984
,
Convection Heat Transfer
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
39.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.10.1016/S0065-2717(08)70205-3
40.
Katto
,
Y.
, and
Shimizu
,
M.
,
1979
, “
Upper Limit of CHF in the Saturated Forced Convection Boiling on a Heated Disk With a Small Impinging Jet
,”
ASME J. Heat Transfer
,
101
(
2
), pp.
265
269
.10.1115/1.3450958
41.
Katto
,
Y.
, and
Yokoya
,
S.
,
1988
, “
Critical Heat Flux on a Disk Heater Cooled by a Circular Jet of Saturated Liquid Impinging at the Center
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
219
227
.10.1016/0017-9310(88)90003-8
42.
Monde
,
M.
,
1985
, “
Critical Heat Flux in Saturated Forced Convective Boiling on a Heated Disk With an Impinging Jet
,”
Wärme- und Stoffübertragung
,
19
, pp.
205
209
.10.1007/BF01403758
43.
Sharan
,
A.
, and
Lienhard
,
J. H.
,
1985
, “
On Predicting Burnout in the Jet-Disk Configuration
,”
ASME J. Heat Transfer
,
107
(
2
), pp.
398
401
.10.1115/1.3247428
44.
Monde
,
M.
, and
Inoue
,
T.
,
1991
, “
Critical Heat Flux in Saturated Forced Convective Boiling on a Heated Disk With Multiple Impinging Jets
,”
ASME J. Heat Transfer
,
113
, pp.
722
727
.10.1115/1.2910623
45.
Cardenas
,
R.
, and
Narayanan
,
V.
,
2012
, “
Heat Transfer Characteristics of Submerged Jet Impingement Boiling of Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4217
4231
.10.1016/j.ijheatmasstransfer.2012.03.063
46.
Dukle
,
N. M.
, and
Hollingsworth
,
D. K.
,
1996
, “
Liquid Crystal Images of the Transition From Jet Impingement Convection to Nucleate Boiling Part I: Monotonic Distribution of the Convection Coefficient
,”
Exp. Therm. Fluid Sci.
,
12
(
3
), pp.
274
287
.10.1016/0894-1777(95)00075-5
47.
Shedd
,
T. A.
, and
Pautsch
,
A. G.
,
2005
, “
Spray Impingement Cooling With Single- and Multiple-Nozzle Arrays. Part II: Visualization and Empirical Models
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3176
3184
.10.1016/j.ijheatmasstransfer.2005.02.013
48.
Horacek
,
B.
,
Kim
,
J.
, and
Kiger
,
K. T.
,
2004
, “
Spray Cooling Using Multiple Nozzles: Visualization and Wall Heat Transfer Measurements
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
614
625
.10.1109/TDMR.2004.838399
49.
Abbasi
,
B.
, and
Kim
,
J.
,
2011
, “
Prediction of PF-5060 Spray Cooling Heat Transfer and Critical Heat Flux
,”
ASME J. Heat Transfer
,
133
(
10
), p.
101504
.10.1115/1.4004012
50.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
You do not currently have access to this content.