This study characterizes the pool boiling performance of HFO-1234yf (hydrofluoroolefin 2,3,3,3-tetrafluoropropene). HFO-1234yf is a new, environmentally friendly refrigerant likely to replace HFC-134a in automotive air-conditioning systems. Pool boiling experiments were conducted at system pressures ranging from 0.7 to 1.7 MPa using horizontally oriented 1-cm2 heated surfaces. Test results for pure (oil-free) HFO-1234yf and HFC-134a were compared. The results showed that the boiling heat transfer coefficients of HFO-1234yf and HFC-134a were nearly identical at lower heat fluxes. HFO-1234yf yielded lower heat transfer coefficients at higher heat fluxes and lower critical heat flux (CHF) values as compared with HFC-134a. To enhance boiling heat transfer, a copper microporous coating was applied to the test surfaces. The coating enhanced both the boiling heat transfer coefficients and CHF for both refrigerants at all tested pressures. Increasing pressure decreased the level of heat transfer coefficient enhancements and increased the level of CHF enhancements. The experimental data were then used to develop a correlation for predicting the CHF for a smooth/plain heated surface.

References

References
1.
Leck
,
T. J.
,
2009
, “
Evaluation of HFO-1234yf as a Potential Replacement for R-134a in Refrigeration Applications
,”
Proc. 3rd IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants Boulder
,
CO
.
2.
Minor
,
B. H.
, and
Spatz
,
M. A.
,
2008
, “
Evaluation of HFO-1234yf for Mobile Air Conditioning
,”
Proc. 2008 SAE World Congress
,
Detroit, MI
.
3.
Park
,
K.-J.
, and
Jung
,
D.
,
2010
, “
Nucleate Boiling Heat Transfer Coefficients of R1234yf on Plain and Low Fin Surfaces
,”
Int. J. Refrigeration
,
33
(
3
), pp.
553
557
.10.1016/j.ijrefrig.2009.12.020
4.
Del Col
,
D.
,
Torresin
,
D.
, and
Cavallini
,
A.
,
2010
, “
Heat Transfer and Pressure Drop During Condensation of the Low GWP Refrigerant R1234yf
,”
Int. J. Refrigeration
,
33
(
7
), pp.
1307
1318
.10.1016/j.ijrefrig.2010.07.020
5.
Park
,
J. E.
,
Vakili-Farahani
,
F.
,
Consolini
,
L.
, and
Thome
,
J. R.
,
2011
, “
Experimental Study on Condensation Heat Transfer in Vertical Minichannels for New Refrigerant R1234ze(E) Versus R134a and R236fa
,”
Exp. Thermal and Fluid Science
,
35
(
3
), pp.
442
454
.10.1016/j.expthermflusci.2010.11.006
6.
Park
,
K.-J.
,
Kang
,
D. G.
, and
Jung
,
D.
,
2011
, “
Condensation Heat Transfer Coefficients of R1234yf on Plain, Low Fin, and Turbo-C Tubes
,”
Int. J. Refrigeration
,
34
(
1
), pp.
317
321
.10.1016/j.ijrefrig.2010.06.010
7.
Tibirica
,
C. B.
,
Ribatski
,
G.
, and
Thome
,
J. R.
,
2012
, “
Flow Boiling Characteristics for R1234ze(E) in 1.0 and 2.2 Mm Circular Channels
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020906
.10.1115/1.4004933
8.
Ji
,
W.-T.
,
Zhang
,
D.-C.
,
Feng
,
N.
,
Guo
,
J.-F.
,
Numata
,
M.
,
Xi
,
G.
, and
Tao
,
W.-Q.
,
2010
, “
Nucleate Pool Boiling Heat Transfer of R134a and R134a-PVE Lubricant Mixtures on Smooth and Five Enhanced Tubes
,”
ASME J. Heat Transfer
,
132
(
11
), p.
111502
.10.1115/1.4001931
9.
Thome
,
J. R.
,
1996
, “
Boiling of New Refrigerants: A State-of-the-Art Review
,”
Int. J. Refrigeration
,
19
(
7
), pp.
435
457
.10.1016/S0140-7007(96)00004-7
10.
Webb
,
R. L.
, and
Pais
,
C.
,
1992
, “
Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1893
1904
.10.1016/0017-9310(92)90192-U
11.
Park
,
K.-J.
,
Jung
,
D.
, and
Shim
,
S. E.
,
2009
, “
Nucleate Boiling Heat Transfer Coefficients of Halogenated Refrigerants up to Critical Heat Fluxes
,”
IMechE, Part C: J. Mechanical Engineering Science
,
223
(
6
), pp.
1415
1424
.10.1243/09544062JMES1356
12.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Report No. AECU-4439 UCLA.
13.
Forrest
,
E. C.
,
Hu
,
L.-W.
,
Mckrell
,
T. J.
,
Buongiorno
,
J.
, and
Ostrovsky
,
Y.
,
2010
, “
Pressure Effects on the Pool Boiling of the Fluorinated Ketone C2F5C(O)CF(CF3)2
,”
Proc. ITherm 2010
,
Las Vegas, NV
.
14.
Bergles
,
A. E.
, and
Chyu
,
M. C.
,
1982
, “
Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
279
285
.10.1115/1.3245084
15.
Kim
,
J. H.
,
Rainey
,
K. N.
,
You
,
S. M.
, and
Pak
,
J. Y.
,
2002
, “
Mechanism of Nucleate Boiling Heat Transfer Enhancement from Microporous Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
500
506
.10.1115/1.1469548
16.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
,
1982
, “
Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,”
Memoirs of the Faculty of Engineering, Kyushu University
,
42
(
2
), pp.
95
111
.
17.
3M
,
2009
, “3M™ Microporous Metallic Boiling Enhancement Coating (BEC) L-20227,” 3M.
18.
Thiagarajan
,
S. J.
,
Narumanchi
,
S.
,
King
,
C.
,
Wang
,
W.
, and
Yang
,
R.
,
2010
, “
Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings
,”
Proc. ASME Heat Transfer Conference
,
Washington, DC
.
19.
Dieck
,
R. H.
,
2007
,
Measurement Uncertainty: Methods and Applications
, ISA, Research Park Triangle Park, NC.
20.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces in FC-72
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
75
83
.10.1115/1.1527890
21.
Thome
,
J. R.
,
1990
,
Enhanced Boiling Heat Transfer
,
Hemisphere
,
New York
.
22.
Saiz-Jabardo
,
J. M.
,
Ribatski
,
G.
, and
Stelute
,
E.
,
2009
, “
Roughness and Surface Material Effects on Nucleate Boiling Heat Transfer From Cylindrical Surfaces to Refrigerants R-134a and R-123
,”
Exp. Therm Fluid Sci.
,
33
(
4
), pp.
579
590
.10.1016/j.expthermflusci.2008.12.004
23.
Morozov
,
V. G.
,
1961
, “
An Experimental Study of Critical Heat Loads at Boiling of Organic Liquids on a Submerged Heating Surface
,”
Int. J. Heat Mass Transfer
,
2
(
3
), pp.
252
258
.10.1016/0017-9310(61)90093-X
24.
Cichelli
,
M. T. B., C. F.
,
1945
, “
Heat Transfer to Liquids Boiling under Pressure
,”
American Institude of Chemical Engineers
,
41
, pp.
755
787
.
25.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase Change Phenomena
,
Taylor & Francis
,
Hebron, KY
.
26.
Kwark
,
S. M.
,
Amaya
,
M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2010
, “
Effects of Pressure, Orientaion and Heater Size on Pool Boiling of Water With Nanocoated Heaters
,”
Int. J. Heat Mass Transfer
,
53
(
23
), pp.
5199
5208
.10.1016/j.ijheatmasstransfer.2010.07.040
27.
Lienhard
,
J. H.
,
Dhir
, V
. K.
, and
Riherd
,
D. M.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
477
482
.10.1115/1.3450092
28.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2005
, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,”
Energy Convers. Manage.
,
46
(
15-16
), pp.
2455
2481
.10.1016/j.enconman.2004.11.012
29.
Cooper
,
M. G.
,
1984
, “
Saturation Nucleate Pool Boiling—a Simple Correlation
,”
Proc. 1st U.K. National Conference on Heat Transfer
,
86
, pp.
785
792
.
30.
Ribatski
,
G.
, and
Saiz-Jabardo
,
J. M.
,
2003
, “
Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4439
4451
.10.1016/S0017-9310(03)00252-7
31.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.10.1115/1.2759969
32.
Nakayama
,
W.
,
Dalkoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces: Part I Experimental Investigation
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
445
450
.10.1115/1.3244320
33.
Tanaka
,
K.
, and
Higashi
,
Y.
,
2010
, “
Thermodynamic Properties of HFO-1234yf (2,3,3,3-Tetrafluoropropene)
,”
Int. J. Refrigeration
,
33
(
3
), pp.
474
479
.10.1016/j.ijrefrig.2009.10.003
34.
Brown
,
S. J.
,
Zilio
,
C.
, and
Cavallini
,
A.
,
2010
, “
Critical Review of the Latest Thermodynamic and Transport Property Data and Models, and Equations of State for R-1234yf
,”
Proc. Intl. Refrigeration and Air-Conditioning, Purdue Univ, West Lafayette, IN
.
35.
Tanaka
,
K.
,
Higashi
,
Y.
, and
Akasaka
,
R.
,
2009
, “
Measurements of the Isobaric Specific Heat Capacity and Density for HFO-1234yf in the Liquid State
,”
J. Chem. Eng. Data
,
55
(
2
), pp.
901
903
.10.1021/je900515a
36.
NIST
,
2011
,
Thermophysical Properties of Fluid Systems, April 4
, http://webbook.nist.gov/chemistry/fluid/
You do not currently have access to this content.