Impinging jets are widely used to achieve a high local convective heat flux, with applications in high power density electronics and various other industrial fields. The heat transfer to steady impinging jets has been extensively researched, yet the understanding of pulsating impinging jets remains incomplete. Although some studies have shown a significant enhancement compared to steady jets, others have shown reductions in heat transfer rate, without consensus on the heat transfer mechanisms that determine this behavior. This study investigates the local convective heat transfer to a pulsating air jet from a long straight circular pipe nozzle impinging onto a smooth planar surface (nozzle-to-surface spacing 1 ≤ H/D ≤ 6, Reynolds numbers 6000 ≤ Re ≤ 14,000, pulsation frequency 9 Hz ≤ f ≤ 55Hz, Strouhal number 0.007 ≤ Sr = fD/Um ≤ 0.1). A different behavior is observed for the heat transfer enhancement in (i) the stagnation zone, (ii) the wall jet region and overall area average. Two different modified Strouhal numbers have been identified to scale the heat transfer enhancement in both regions: (i) Sr(H/D) and (ii) SrRe0.5. The average heat transfer rate increases by up to 75–85% for SrRe0.5 ≅ 8 (Sr = 0.1, Re = 6000), independent of nozzle-to-surface spacing. The stagnation heat transfer rate increases with nozzle-to-surface distance H/D. For H/D = 1 and low pulsation frequency (Sr < 0.025), a reduction in stagnation point heat transfer rate by 13% is observed, increasing to positive enhancements for Sr(H/D) > 0.1 up to a maximum enhancement of 48% at Sr(H/D) = 0.6.

References

References
1.
Garimella
,
S. V.
,
Yeh
,
L.-T.
, and
Persoons
,
T.
,
2012
, “
Thermal Management Challenges in Telecommunication Systems and Data Centers
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
8
), pp.
1307
1316
.10.1109/TCPMT.2012.2185797
2.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
3.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
A Novel High Performance, Ultra Thin Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
586
598
.10.1016/j.ijheatfluidflow.2010.03.001
4.
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2011
, “
A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3900
3908
.10.1016/j.ijheatmasstransfer.2011.04.037
5.
Persoons
,
T.
,
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2009
, “
Heat Transfer in Adjacent Interacting Impinging Synthetic Jets
,”
Proceedings of ASME Heat Transfer Summer Conference, San Francisco, CA, Vol. 1: Heat Transfer in Electronic Equipment, ASME
,
San Francisco, CA
, pp.
955
962
.
6.
Shadlesky
,
P. S.
,
1983
, “
Jet Impingement to a Plane Surface
,”
AIAA J.
,
21
(
8
), pp.
1214
1215
.10.2514/3.8231
7.
Liu
,
T. S.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.10.1016/0017-9310(96)00027-0
8.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Effect of Acoustic Excitation on the Heat Transfer to an Impinging Air Jet
,”
Proceedings of the ASME-JSME Thermal Engineering Summer Heat Transfer Conference
,
Vancouver, BC, Canada
, Paper No. HT2007–32800.
9.
Sheriff
,
H. S. S.
, and
Zumbrunnen
,
D. A. A.
,
1994
, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
886
895
.10.1115/1.2911463
10.
Azevedo
,
L. F. A.
,
Webb
,
B. W.
, and
Queiroz
,
M.
,
1994
, “
Pulsed Air Jet Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
8
(
3
), pp.
206
213
.10.1016/0894-1777(94)90049-3
11.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3638
3648
.10.1016/j.ijheatmasstransfer.2007.02.001
12.
Camci
,
C.
, and
Herr
,
F.
,
2002
, “
Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet
,”
ASME J. Heat Transfer
,
124
(
4
), p.
770
.10.1115/1.1471521
13.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat-Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
91
98
.10.1115/1.2910675
14.
Herwig
,
H.
, and
Middelberg
,
G.
,
2008
, “
The Physics of Unsteady Jet Impingement and Its Heat Transfer Performance
,”
Acta Mech.
,
201
(
1–4
), pp.
171
184
.10.1007/s00707-008-0080-0
15.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1997
, “
Local Convective Heat Transfer to Submerged Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
40
(
14
), pp.
3305
3321
.10.1016/S0017-9310(96)00380-8
16.
Behera
,
R. C.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2007
, “
Numerical Study of Interrupted Impinging Jets for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
275
284
.10.1109/TCAPT.2007.898353
17.
Farrington
,
R. B.
, and
Clauncht
,
S. D.
,
1994
, “
Infrared Imaging of Large-Amplitude, Low-Frequency Disturbances on a Planar Jet
,”
AIAA J.
,
32
(
2
), pp.
317
323
.10.2514/3.11987
18.
Smith
,
B. L.
, and
Glezer
,
A.
,
2001
, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
,
10
(
9
), pp.
2281
2297
.10.1063/1.869828
19.
Valiorgue
,
P.
,
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2009
, “
Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
597
603
.10.1016/j.expthermflusci.2008.12.006
20.
Persoons
,
T.
,
Saenen
,
T.
,
Van Oevelen
,
T.
, and
Baelmans
,
M.
,
2012
, “
Effect of Flow Pulsation on the Heat Transfer Performance of a Minichannel Heat Sink
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091702
.10.1115/1.4006485
21.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer—Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3291
3301
.10.1016/j.ijheatmasstransfer.2007.01.044
22.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
23.
Beranek
,
L. L.
,
1996
,
Acoustics, Acoustical Society of America
,
Woodbury
,
NY
.
24.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air-Jet Impingement Heat-Transfer at Low Nozzle Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
25.
Lee
,
J.
, and
Lee
,
S. S.
,
1999
, “
Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement
,”
Exp. Heat Transfer
,
12
(
2
), pp.
137
156
.10.1080/089161599269753
26.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
27.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
28.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat-Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
29.
Hoogendoorn
,
C. J.
,
1977
, “
Effect of Turbulence on Heat-Transfer at a Stagnation Point
,”
Int. J. Heat Mass Transfer
,
20
(
12
), pp.
1333
1338
.10.1016/0017-9310(77)90029-1
30.
Brdlik
,
P. M.
, and
Savin
, V
. K.
,
1966
, “
Heat Transfer in the Vicinity of the Stagnation Point in an Axisymmetric Jet Flowing Over Flat Surfaces Normal to the Flow
,”
J. Eng. Phys.
,
10
(
4
), pp.
241
245
.10.1007/BF00837813
31.
Gauntner
,
J. W.
,
Livingood
J. N. B.
,
Hrycak
P. D-N. A. S. A. T. N.
,
Guzlntner
J. W.
, and
Hrycuk
P.
,
1970
, “
Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate
,” NASA Technical Note TN D-5652, NASA, Washington, DC.
You do not currently have access to this content.