The paper presents the enhancement in the operational limits (boiling, entrainment, sonic, viscous and capillary limits) of heat pipes using silver nanoparticles dispersed in de-ionized (DI) water. The tested nanoparticles concentration ranged from 0.003 vol. % to 0.009 vol. % with particle diameter of <100 nm. The nanofluid as working fluid enhances the effective thermal conductivity of heat pipe by 40%, 58%, and 70%, respectively, for volume concentrations of 0.003%, 0.006%, and 0.009%. For an input heat load of 60 W, the adiabatic vapor temperatures of nanofluid based heat pipes are reduced by 9 °C, 18 °C, and 20 °C, when compared with DI water. This reduction in the operating temperature enhances the thermophysical properties of working fluid and gives a change in the various operational limits of heat pipes. The use of silver nanoparticles with 0.009 vol. % concentration increases the capillary limit value of heat pipe by 54% when compared with DI water. This in turn improves the performance and operating range of the heat pipe.

References

References
1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exhibition
,
San Francisco, CA
, pp.
99
105
.
2.
Shafai
,
M.
,
Bianco
, V
.
,
Vafai
,
K.
, and
Manca
,
O.
,
2010
, “
An Investigation of the Thermal Performance of Cylindrical Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
376
383
.10.1016/j.ijheatmasstransfer.2009.09.019
3.
Liu
,
Z. H.
,
Li
,
Y.
, and
Bao
,
R.
,
2011
, “
Compositive Effect of Nanoparticle Parameter on Thermal Performance of Cylindrical Micro-Grooved Heat Pipe Using Nanofluids
,”
Int. J. Therm. Sci.
,
50
, pp.
558
568
.10.1016/j.ijthermalsci.2010.11.013
4.
Nemec
,
P.
,
Caja
,
A.
, and
Malcho
,
M.
,
2011
, “
Mathematical Model for Heat Transfer Limitations of Heat Pipe
,”
Math. Comput. Modell.
,
57
, pp.
126
136
. 10.1016/j.mcm.2011.06.047
5.
Nemec
,
P.
, and
Huzvar
,
J.
,
2007
, “
Mathematical Calculation of Total Heat Power of the Sodium Heat Pipe
,” Institute of Inorganic Chemistry, Slovak Academy of Science, Article for Solution to Project APVV-0517-07.
6.
Naik
,
R.
,
Varadarajan
,
V.
, and
Pundarika
,
G.
,
2011
, “
Design, Fabrication and Performance Evaluation of Axially Grooved Wick Assisted Heat Pipe
,”
Int. J. Emerg. Trends Eng. Dev.
,
2
(
1
), pp.
25
39
.
7.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor and Francis Publication
,
Washington, DC
.
8.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes, Modeling, Testing and Applications
,
Wiley-Interscience Publication, John Wiley and Sons
,
New York
.
9.
Thuchayapong
,
N.
,
Nakanob
,
A.
,
Sakulchangsatjataia
,
P.
, and
Terdtoona
,
P.
,
2012
, “
Effect of Capillary Pressure on Performance of a Heat Pipe: Numerical Approach With FEM
,”
Appl. Therm. Eng.
,
32
, pp.
93
99
. 10.1016/j.applthermaleng.2011.08.034
10.
Riehl
,
R. R.
, and
Santos
,
N. D.
,
2012
, “
Water-Copper Nanofluid Application in an Open Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
42
, pp.
6
10
.10.1016/j.applthermaleng.2011.01.017
11.
Chiang
,
Y. C.
,
Chieh
,
J.-J.
, and
Ho
,
C. C.
,
2012
, “
The Magnetic-Nanofluid Heat Pipe With Superior Thermal Properties Through Magnetic Enhancement
,”
Nanoscale Res. Lett.
,
7
, pp.
322
328
.10.1186/1556-276X-7-322
12.
Liu
,
Z. H.
, and
Li
,
Y. Y.
,
2012
, “
A New Frontier of Nanofluid Research—Application of Nanofluids in Heat Pipes
,”
Int. J. Heat Mass Transfer
,
55
, pp.
6786
6797
.10.1016/j.ijheatmasstransfer.2012.06.086
13.
Putra
,
N.
,
Septiadi
,
W. N.
,
Rahman
,
H.
, and
Irwansyah
,
R.
,
2012
, “
Thermal Performance of Screen Mesh Wick Heat Pipes With Nanofluids
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
10
17
.10.1016/j.expthermflusci.2012.01.007
14.
Hajian
,
R.
,
Layeghi
,
M.
, and
Abbaspour Sani
,
K.
,
2012
, “
Experimental Study of Nanofluid Effects on the Thermal Performance With Response Time of Heat Pipe
,”
Energy Convers. Manage.
,
56
, pp.
63
68
.10.1016/j.enconman.2011.11.010
15.
Alizad
,
K.
,
Vafai
,
K.
, and
Shafahi
,
M.
,
2012
, “
Thermal Performance and Operational Attributes of the Startup Characteristics of Flat-Shaped Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
140
155
.10.1016/j.ijheatmasstransfer.2011.08.050
16.
Tsai
,
T. H.
,
Chien
,
H. T.
, and
Chen
,
P. H.
,
2011
, “
Improvement on Thermal Performance of a Disk-Shaped Miniature Heat Pipe With Nanofluid
,”
Nanoscale Res. Lett.
,
6
, pp.
590
596
.10.1186/1556-276X-6-590
17.
Putra
,
N.
,
Yanuar
,
Iskandar
,
F. N.
,
2011
, “
Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1274
1281
.10.1016/j.expthermflusci.2011.04.015
18.
Jamshidi
,
H.
,
Arabnejad
,
S.
,
Shafii
,
M. B.
,
Saboohi
,
Y.
,
2011
, “
Thermal Characteristics of Closed Loop Pulsating Heat Pipe With Nanofluids
,”
J. Enhanced Heat Transfer
,
18
(
3
), pp.
221
237
.10.1615/JEnhHeatTransf.v18.i3.40
19.
Ji
,
Y.
,
Ma
,
H.
,
Su
,
F.
, and
Wang
,
G.
,
2011
, “
Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
724
727
.10.1016/j.expthermflusci.2011.01.007
20.
Li
,
Q. M.
,
Zou
,
J.
,
Yang
,
Z.
,
Duan
,
Y.-Y.
, and
Wang
,
B.-X.
,
2011
, “
Visualization of Two-Phase Flows in Nanofluid Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052901
.10.1115/1.4003043
21.
Huminic
,
G.
,
Huminic
,
A.
,
Morjan
, I
.
, and
Dumitrache
,
F.
,
2011
, “
Experimental Study of the Thermal Performance of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
656
661
.10.1016/j.ijheatmasstransfer.2010.09.005
22.
Liu
,
Z.
, and
Zhu
,
Q.
,
2011
, “
Application of Aqueous Nanofluids in a Horizontal Mesh Heat Pipe
,”
Energy Convers. Manage.
,
52
(
1
), pp.
292
300
.10.1016/j.enconman.2010.07.001
23.
Wang
,
G. S.
,
Song
,
B.
, and
Liu
,
Z. H.
,
2012
, “
Operation Characteristics of Cylindrical Miniature Grooved Heat Pipe Using Aqueous CuO Nanofluids
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1415
1421
.10.1016/j.expthermflusci.2010.07.004
24.
Li
,
Y.
,
Lv
,
L.
, and
Liu
,
Z.
,
2010
, “
Influence of Nanofluids on the Operation Characteristics of Small Capillary Pumped Loop
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2312
2320
.10.1016/j.enconman.2010.04.004
25.
Liu
,
Z. H.
,
Li
,
Y. Y.
, and
Bao
,
R.
,
2010
, “
Thermal Performance of Inclined Grooved Heat Pipes Using Nanofluids
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1680
1687
.10.1016/j.ijthermalsci.2010.03.006
26.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
,
2010
, “
Thermal Performance of Flat-Shaped Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1438
1445
.10.1016/j.ijheatmasstransfer.2009.12.007
27.
Qu
,
J.
,
Wu
,
H. Y.
, and
Cheng
,
P.
,
2010
, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3-Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
111
115
.10.1016/j.icheatmasstransfer.2009.10.001
28.
Kang
,
S. W.
,
Wei
,
W. C.
,
Tsai
,
S. H.
, and
Huang
,
C. C.
,
2009
, “
Experimental Investigation of Nanofluids on Sintered Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
973
979
.10.1016/j.applthermaleng.2008.05.010
29.
Yang
,
X. F.
,
Liu
,
Z. H.
, and
Zhao
,
J.
,
2008
, “
Heat Transfer Performance of a Horizontal Micro-Grooved Heat Pipe Using CuO Nanofluid
,”
J. Micromech. Microeng.
18
(
3
), p.
035038
.10.1088/0960-1317/18/3/03503
30.
Liu
,
Z. H.
,
Xiong
,
J. G.
, and
Bao
,
R.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-Grooved Heating Surface
,”
Int. J. Multiphase Flow
,
33
(
12
), pp.
1284
1295
.10.1016/j.ijmultiphaseflow.2007.06.009
31.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), p.
143116
.10.1063/1.2192971
32.
Tsai
,
C. Y.
,
Chien
,
H. T.
,
Ding
,
P. P.
,
Chan
,
B.
,
Luh
,
T. Y.
, and
Chen
,
P. H.
,
2004
, “
Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance
,”
Mater. Lett.
,
58
(
9
), pp.
1461
1465
.10.1016/j.matlet.2003.10.009
33.
Pak
,
B. C.
, and
Cho
, I
. Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Sub-Micron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.10.1080/08916159808946559
34.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
35.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
M. D.
,
Wongwises
,
S.
,
2010
, “
Experimental Investigation of Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid
,”
Exp. Heat Transfer
,
23
(
4
), pp.
317
332
.10.1080/08916150903564796
36.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
37.
Ahmad
,
H.
, and
Rajab
,
H.
,
2010
, “
An Experimental Study of Parameters Affecting a Heat Pipe Performance
,”
Al-Rafidain Eng. J.
,
18
(
3
), pp.
97
116
.
You do not currently have access to this content.