Conductive heat transfer is of importance in the cooling of electronic equipment. However, in order for conductive cooling to become effective, the use of high-conducting materials and the correct distribution thereof is essential, especially when the volume which needs to be cooled has a low thermal conductivity. An emerging method of designing internal solid-state conductive systems by means of topology optimization is considered in this paper. In this two-dimensional study, the optimum distribution of high conductive material within a square-shaped heat-generating medium is investigated by making use of the “method or moving asymptotes” (MMA) optimization algorithm coupled with a numerical model. The use of such a method is considered for a number of cost (driving) functions and different control methods to improve the definiteness of the boundaries between the heat-generating and high-conduction regions. It is found that the cost function used may have a significant influence on the optimized material distribution. Also of interest in this paper are the influences of thermal conductivity and the proportion of the volume occupied by the high-conducting solid on the resulting internal cooling structure distribution and its thermal conduction performance. For a square domain with a small exposed isothermal boundary centered on one edge, a primary V-shaped structure was found to be predominantly the most effective layout to reduce the peak operating temperature and to allow for an increase in the internal heat flux levels.

References

References
1.
Dirker
,
J.
,
Liu
,
W.
,
Van Wyk
,
J. D.
,
Meyer
,
J. P.
, and
Malan
,
A. G.
,
2005
, “
Embedded Solid State Heat Extraction in Integrated Power Electronic Modules
,”
IEEE Trans. Power Electron.
,
20
(
3
), pp
694
703
.10.1109/TPEL.2005.846532
2.
Dirker
,
J.
,
Van Wyk
,
J. D.
, and
Meyer
,
J. P.
,
2006
, “
Cooling of Power Electronics by Embedded Solids
,”
ASME J. Electron. Packag.
,
128
, pp.
388
397
.10.1115/1.2351903
3.
Dirker
,
J.
,
Malan
,
A. G.
, and
Meyer
,
J. P.
,
2007
, “
Thermal Characteristics of Rectangular Cooling Shaped in Solids
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
(
4
), pp.
361
383
.10.1108/09615530710739158
4.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2007
, “
Cooling Layers in Rectangular Heat Generating Electronic Regions for Two Boundary Condition Types—A Comparison With a Traditional Approach
,”
S. Afr. J. Sci.
,
103
(
11/12
), pp.
474
482
.
5.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2009
, “
Heat Removal From Power Electronics in Two Direction Sets Using Embedded Solid State Cooling Layers—A Proposed Non-Numerical Calculation Method
,”
Heat Transfer Eng.
,
30
(
6
), pp.
452
465
.10.1080/01457630802528745
6.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2009
, “
Thermal Characterization of Embedded Heat Spreading Layers in Rectangular Heat-Generating Electronic Modules
,”
Int. J. Heat Mass Transfer
,
52
(
5–6), p
p.
1374
1384
.10.1016/j.ijheatmasstransfer.2007.10.045
7.
Bello-Ochende
,
T.
,
Meyer
,
J. P.
, and
Dirker
,
J.
,
2010
, “
Three-Dimensional Multi-Scale Plate Assembly for Maximum Heat Transfer Rate Density
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
586
593
.10.1016/j.ijheatmasstransfer.2009.10.041
8.
Prigogine
,
I.
,
1980
,
From Being to Becoming: Time and Complexity in the Physical Sciences
,
Freeman
,
San Francisco
.
9.
Mandelbrot
,
B. B.
,
1983
,
The Fractal Geometry of Nature
,
Freeman
,
New York
.
10.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2101
2115
.10.1016/S0017-9310(99)00283-5
11.
Bejan
,
A.
,
1997
, “
Constructal-Theory Networks of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
, pp.
799
816
.10.1016/0017-9310(96)00175-5
12.
Almogbel
,
M.
, and
Bejan
,
A.
,
1999
, “
Conduction Trees With Spacing at Tips
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3739
3756
.10.1016/S0017-9310(99)00051-4
13.
Almogbel
,
M.
, and
Bejan
,
A.
,
2000
, “
Cylindrical Trees of Pin Fins
,”
Int. J. Heat Mass Transfer
,
43
, pp.
4285
4297
.10.1016/S0017-9310(00)00049-1
14.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Constructal Design for Cooling a Disc-Shaped Area by Conduction
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1643
1652
.10.1016/S0017-9310(01)00269-1
15.
Ghodoossi
,
L.
and
Egrican
,
N.
,
2004
, “
Conductive Cooling of Triangular Shaped Electronics Using Constructal Theory
,”
Energy Convers. Manage.
,
45
, pp.
811
828
.10.1016/S0196-8904(03)00190-0
16.
Da Silva
,
A. K.
,
Vasile
,
C.
, and
Bejan
,
A.
,
2004
, “
Disc Cooled With High-Conductivity Inserts That Extend Inward From the Perimeter
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4257
4263
.10.1016/j.ijheatmasstransfer.2004.04.024
17.
Bejan
,
A.
,
1996
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
, pp.
799
816
.10.1016/0017-9310(96)00175-5
18.
Ledezma
,
G. A.
,
Bejan
,
A.
, and
Errera
,
M. R.
,
1997
, “
Constructal Tree Networks for Heat Transfer
,”
J. Appl. Phys.
,
82
(
1
), pp.
89
100
.10.1063/1.365853
19.
Errera
,
M. R.
, and
Bejan
,
A.
,
1998
, “
Deterministic Tree Networks for River Drainage Basins
,”
Fractals
,
6
(
3
), pp.
245
261
.10.1142/S0218348X98000298
20.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
21.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.10.1016/0045-7949(93)90035-C
22.
Li
,
Q.
,
Steven
,
G. P.
,
Querin
,
O. M.
, and
Xie
,
Y. M.
,
1999
, “
Shape and Topology Design for Heat Conduction by Evolutionary Structural Optimization
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3361
3371
.10.1016/S0017-9310(99)00008-3
23.
Steven
,
G. P.
,
Li
,
Q.
, and
Xie
,
M.
,
2000
, “
Evolutionary Topology and Shape Design for General Physical Field Problems
,”
Comput. Mech.
,
26
, pp.
129
139
.10.1007/s004660000160
24.
Li
,
Q.
,
Steven
,
G. P.
,
Xie
,
Y. M.
, and
Querin
,
O. M.
,
2004
, “
Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5071
5083
.10.1016/j.ijheatmasstransfer.2004.06.010
25.
Boichot
,
R.
,
Luo
,
L.
, and
Fan
,
Y.
,
2009
, “
Tree-Network Structure Generation for Heat Conduction by Cellular Automaton
,”
Energy Convers. Manage.
,
50
, pp.
376
386
.10.1016/j.enconman.2008.09.003
26.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
, pp.
359
373
.10.1002/nme.1620240207
27.
Groenwold
,
A. A.
, and
Etman
,
L. F. P.
,
2010
, “
A Quadratic Approximation for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
82
, pp.
505
524
.
28.
Klarbring
,
A.
,
Petersson
,
J.
, and
Rönnqvist
,
M.
,
1995
, “
Truss Topology Optimization Including Unilateral Contact
,”
J. Optim. Theory Appl.
,
87
, pp.
1
31
.10.1007/BF02192039
29.
Ma
,
Z-D.
, and
Kikuchi
,
N.
,
2006
, “
Multidomain Topology Optimization for Structural and Material Designs
,”
ASME J. Appl. Mech.
,
73
, pp.
565
573
.10.1115/1.2164511
30.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,”
Struct. Multidiscip. Optim.
,
31
, pp.
251
259
.10.1007/s00158-005-0584-3
31.
Zang
,
Y.
, and
Liu
,
S.
,
2008
, “
Design of Conducting Paths Based on Topology Optimization
,”
Heat Mass Transfer
,
44
, pp.
1217
1227
.10.1007/s00231-007-0365-1
32.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
33.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2010
, “
Topology Optimisation for an Internal Heat Conducting Cooling Scheme in a Square Domain
,”
Proceedings of the 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Antalya, Turkey
, pp.
1785
1790
.
34.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimisation—Theory, Methods, and Applications
,
Springer
,
Berlin
.
You do not currently have access to this content.