In this work, the effect of vapor chamber characteristics, the properties of its working fluid and the operating parameters on the vapor chamber performance are studied. Also, the effects of these parameters on the cooling process are considered. A three dimensional hydrodynamic model is used for solving the fluid flow through the liquid and vapor regions of the vapor chamber. The hydrodynamic model is coupled with a three dimensional thermal model to calculate the model temperature. The hydrodynamic model takes into consideration the circulation of liquid between the two wick regions. An implicit finite difference method is used to solve the numerical model and a validation of the numerical model is presented. The effect of porosity of the wick material, wick structure, solid wall material, working fluid, wick region thickness, vapor region thickness, power input, and heat transfer coefficient of the cooling fluid are taken in the study. Their effects on the heat pipe temperature, pressure difference of the heat pipe, liquid and vapor velocities and mass evaporated are studied. The results show that, to increase the cooling performance of the heat pipe, the porosity, wick thickness, power input, and vapor region thickness should be decreased and the heat transfer coefficient should be increased. To minimize the maximum pressure difference of the heat pipe, increase porosity, wick thickness, and vapor thickness and decrease heat transfer coefficient and power input. The study shows that the increase of wick thickness by a factor of four decreases the maximum pressure difference by about 75% and increases the maximum vapor chamber temperature 30%. It also shows that the vapor region thickness has an insignificant effect on the vapor chamber temperature and pressure. The increase of the heat transfer coefficient of the cooling liquid decreases its effect on heat pipe performance.

References

References
1.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Prasher
,
R.
,
2002
, “
Spreading in the Heat Sink Base: Phase Change System or Solid Metals
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part C
,
25
(
4
), pp.
621
628
.10.1109/TCAPT.2002.807994
2.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor and Francis
,
Washington, DC
.
3.
Chen
,
Y. S.
,
Chien
,
K. H.
,
Hung
,
T. C.
,
Wang
,
C.
,
Ferng
,
Y.
, and
Pei
,
B.
,
2009
, “
Numerical Simulation of a Heat Sink Embedded With a Vapor Chamber and Calculation of Effective Thermal Conductivity of a Vapor Chamber
,”
Appl. Therm. Eng.
,
29
, pp.
2655
2664
.10.1016/j.applthermaleng.2008.12.009
4.
Alizad
,
K.
,
Vafai
,
K.
, and
Shafahi
,
M.
,
2002
, “
Thermal Performance and Operational Attributes of the Startup Characteristics of Flat-Shaped Heat Pipes Using Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
55
, pp.
140
155
.10.1016/j.ijheatmasstransfer.2011.08.050
5.
Xiao
,
B.
, and
Faghri
,
A.
,
2008
, “
A Three Dimensional Thermal Fluid Analysis of Flat Heat Pipes
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3113
3126
.10.1016/j.ijheatmasstransfer.2007.08.023
6.
Alexandre
,
O. S.
,
Márcia
,
M. B. H.
, and
Fernando
,
M. M.
,
2007
, “
Use of Vapor Chamber on Electronic Devices to Eliminate Hot Spots Under Fin Heat Sinks
,”
14th International Heat Pipe Conference (14th IHPC)
,
Florianópolis, Brazil
, pp.
22
27
.
7.
Xiaojin
,
W.
, and
Sikka
,
K.
,
2006
, “
Modeling of Vapor Chamber as Heat Spreading Devices
,”
International Thermal and Thermo Mechanical Phenomena in Electronics Systems Conference
,
New York
, pp.
578
585
.
8.
Hsieh
,
S. S.
,
Lee
,
R. Y.
,
Shyu
,
J.
, and
Chen
,
S. W.
,
2008
, “
Thermal Performance of Flat Vapor Chamber Heat Spreader
,”
Energy Convers. Manage.
,
49
, pp.
1774
1784
.10.1016/j.enconman.2007.10.024
9.
Chuan
,
R.
,
2011
, “
Parametric Effects on Heat Transfer in Loop Heat Pipe's Wick
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3987
3999
.10.1016/j.ijheatmasstransfer.2011.04.026
10.
Ahmed
,
A. A.
,
Baiumy
,
A.
, and
El-Assal
,
T. A.
,
2012
, “
Experimental Investigation of Vapor Chamber With Different Working Fluids at Different Charge Ratios
,”
Ain Shams Eng. J.
,
3
, pp.
289
297
.
11.
Harmand
S.
,
Sonan
,
R.
,
Fakès
,
M.
, and
Hassan
,
H.
,
2011
, “
Transient Cooling of Electronic Components by Flat Heat Pipes
,”
Appl. Therm. Eng.
,
31
, pp.
1877
1885
.10.1016/j.applthermaleng.2011.02.034
12.
Towwier
,
J. M.
, and
Elgenr
,
M. S.
,
1994
, “
A Heat Pipe Transient Analysis Model
,”
Int. J. Heat Mass Transfer
,
37
(
5
), pp.
753
762
.10.1016/0017-9310(94)90113-9
13.
Eames
, I
. W.
,
Marr
,
N. J.
, and
Sabir
,
H.
,
1997
, “
The Evaporation Coefficient of Water: A Review
,”
Int. J. Heat Mass Transfer
,
40
, pp.
2963
2973
.10.1016/S0017-9310(96)00339-0
14.
Tsay
,
Y. L.
,
Lin
,
T. F.
, and
Yan
,
W. M.
,
1990
, “
Cooling of Falling Liquid Film Through Interfacial Heat and Mass Transfer
,”
J. Mult. Flow
,
16
, pp.
853
865
10.1016/0301-9322(90)90008-7
15.
Reay
,
D. A.
, and
Kew
,
P. A.
,
2006
, “
Heat Pipes, Theory, Design and Applications
,
Butterworth-Heinemann is an imprint of Elsevier Linacre House
,
Jordan Hill
, Oxford, UK.
16.
Ochterbeck
,
J. M.
,
2003
, “
Heat Pipes
,”
Handbook of Heat Transfer
,
A.
Bejan
and
A.
Kraus
, eds.,
Wiley
,
New York
.
17.
Wenk
,
W. D.
,
Ramshaw
,
J. D.
,
Trapp
,
J. A.
,
Hughes
,
E. D.
, and
Solbrig
,
C. W.
,
1975
, “
Transient Three Dimensional Thermal Hydraulic Analysis of Nuclear Reactor Fuel Rod analysis: General Equations and Numerical Scheme
,”
Aero Jet Nuclear Company, ANCR-1207
.
18.
Patenker
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
19.
Takemitso
,
N.
,
1986
, “
An Implicit Finite Difference Method to Solve Incompressible Fluid Flow
,”
Bull. JSME
,
29
, pp.
3319
3327
.10.1299/jsme1958.29.3319
20.
Ito
,
K.
, and
Qiao
,
Z.
,
2008
, “
A High Order Compact MAC Finite Difference Scheme for the Stokes Equations/Augmented Variable Approach
,”
J. Comput. Phys.
,
227
, pp.
8177
8190
.10.1016/j.jcp.2008.05.021
21.
Aziz
,
K.
, and
Hellums
,
J. D.
,
1967
, “
Numerical Solution of Three Dimensional Equations of Motion for Laminar Natural Convection
,”
Phys. Fluids
,
10
, pp.
314
324
.10.1063/1.1762111
22.
Fletcher
,
C. A. J.
,
1991
,
Computational for Fluid Dynamics
,
2nd ed.
,
Springer-Verlag
,
Sydney
, pp.
330
374
.
23.
Sonan
,
R.
,
Harmand
,
S.
,
Pellé
,
J.
,
Leger
,
D.
, and
Fakès
,
M.
,
2008
, “
Transient Thermal and Hydrodynamic Model of Flat Heat Pipe for the Cooling of Electronic Components
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6006
6017
.10.1016/j.ijheatmasstransfer.2008.04.071
24.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
, and
Vadakkan
,
U.
,
2011
, “
A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects
,”
Int. J. Heat Mass Transfer
,
54
, pp.
153
168
.10.1016/j.ijheatmasstransfer.2010.09.057
You do not currently have access to this content.