The computational study of heat transfer and fluid flow in a porous media cold plate was investigated using lattice Boltzmann method. The study was carried out on a heat exchanger including two adiabatic inlet and outlet conduit and three hot fins with constant temperature. The porous medium is positioned between the fins to enhance heat transfer rate. The local thermal equilibrium assumption between the fluid and solid phases and the Brinkman–Forchheimer extended Darcy equation was used to simulate the porous domain. The effect of porosity on heat transfer from the fins surfaces was studied at different Reynolds and Prandtl numbers. Results show that by decreasing the porosity, the heat transfer rate increases and the fluid bulk temperature grows at less time for different Reynolds and Prandtl numbers.

References

1.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
,
Springer
,
New York.
2.
Vafai
,
K.
,
2005
,
Handbook of Porous Media
,
Taylor & Francis
,
New York.
3.
Kim
,
S. Y.
,
Koo
,
J. M.
, and
Kuznetsov
,
A. V.
,
2001
, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminum Foam Heat Sink
,”
Numer. Heat Transfer, Part A
,
40
, pp.
21
36
.10.1080/104077801300348851
4.
Kim
,
S. Y.
, and
Kuznetsov
,
A. V.
,
2003
, “
Optimization of Pin-Fin Heat Sinks Using Anisotropic Local Thermal Nonequilibrium Porous Model in a Jet Impinging Channel
,”
Numer. Heat Transfer, Part A
,
44
, pp.
771
787
.10.1080/716100528
5.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2006
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
, pp.
259
266
.10.1115/1.2229225
6.
Yang
,
J.
,
Zeng
,
M.
,
Wang
,
Q.
, and
Nakayama
,
A.
,
2010
, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
,
132
, p.
051702
.10.1115/1.4000708
7.
Hamdan
,
M.
, and
Al-Nimr
,
M. A.
,
2010
, “
The Use of Porous Fins for Heat Transfer Augmentation in Parallel-Plate Channels
,”
Transp. Porous Media
,
84
, pp.
409
420
.10.1007/s11242-009-9510-2
8.
Don
,
Z.
,
Lia
,
W.
, and
Song
,
Y.
,
2009
, “
Lattice Boltzmann Simulation of Growth and Deformation for a Rising Vapor Bubble Through Superheated Liquid
,”
Numer. Heat Transfer, Part A
,
55
, pp.
381
400
.10.1080/10407780902720718
9.
Mehrizi
,
A. A.
,
Farhadi
,
M.
,
Afroozi
,
H. H.
,
Sedighi
,
K.
, and
Darzi
,
A. A. R.
,
2012
, “
Mixed Convection Heat Transfer in a Ventilated Cavity With Hot Obstacle: Effect of Nanofluid and Outlet Port Location
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
1000
1008
.10.1016/j.icheatmasstransfer.2012.04.002
10.
Guo
,
Z.
, and
Zhao
,
T. S.
,
2002
, “
Lattice Boltzmann Model for Incompressible Flows Through Porous Media
,”
Phys. Rev. E
,
66
, p.
036304
.10.1103/PhysRevE.66.036304
11.
Seta
,
T.
,
Takegoshi
,
E.
,
Kitano
,
K.
, and
Okui
,
K.
,
2006
, “
Thermal Lattice Boltzmann Model for Incompressible Flows Through Porous Media
,”
J. Therm. Sci. Technol.
,
1
, pp.
90
100
.10.1299/jtst.1.90
12.
Shokouhmand
,
H.
,
Jam
,
F.
, and
Salimpour
,
M. R.
,
2009
, “
Simulation of Laminar Flow and Convective Heat Transfer in Conduits Filled With Porous Media Using Lattice Boltzmann Method
,”
Int. Commun. Heat Mass Transfer
,
36
, pp.
378
384
.10.1016/j.icheatmasstransfer.2008.11.016
13.
Thayer
,
J. G.
,
Wert
,
K. L.
,
North
,
M. T.
, and
Schaeffer
,
S.
,
2006
, “
Porous Media Cold Plate
,” Patent No. 7,044,199 B2.
14.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collisional Processes in Gases I: Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
,
94
, pp.
511
525
.10.1103/PhysRev.94.511
15.
Seta
,
T.
,
Takegoshi
,
E.
, and
Okui
,
K.
,
2006
, “
Lattice Boltzmann Simulation of Natural Convection in Porous Media
,”
Mathem. Comput. Simul.
,
72
, pp.
195
200
.10.1016/j.matcom.2006.05.013
16.
Kuznetsov
,
A. V.
,
1998
, “
Analytical Study of Fluid Flow and Heat Transfer during Forced Convection in a Composite Channel Partly Filled With a Brinkman–Forchheimer Porous Medium
,”
Flow Turbul. Combust.
,
60
, pp.
173
192
.10.1023/A:1009998703180
17.
Kuznetsov
,
A. V.
, and
Xiong
,
M.
,
2000
, “
Numerical Simulation of the Effect of Thermal Dispersion on Forced Convection in a Circular Duct Partly Filled With a Brinkman-Forchheimer Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
, pp.
488
502
.10.1108/09615530010338169
18.
Ergun
,
S.
,
1952
, “
Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
19.
Peng
,
Y.
,
Shu
C.
, and
Chew
,
Y. T.
,
2003
, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
,
68
,
p. 026701
.
20.
Kaviany
,
M.
,
1985
, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transfer
,
28
, pp.
851
858
.10.1016/0017-9310(85)90234-0
21.
Vafai
,
K.
, and
Sözen
,
M.
,
1990
, “
An Investigation of a Latent Heat Storage Porous Bed and Condensing Flow Through it
,”
ASME J. Heat Transfer
,
112
, pp.
1014
1022
.10.1115/1.2910473
22.
Nield
,
D. A.
,
Kuznetsov
,
A. V.
, and
Xiong
,
M.
,
2002
, “
Effect of Local Thermal no-Equilibrium on Thermally Developing Forced Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4949
4955
.10.1016/S0017-9310(02)00203-X
23.
Kaviani
,
M.
,
1995
,
Principle of Heat Transfer in Porous Media
,
Springer
,
New York
.
24.
Yang
,
C.
,
Ando
,
K.
, and
Nakayama
,
A.
,
2011
, “
A Local Thermal Non-Equilibrium Analysis of Fully Developed Forced Convective Flow in a Tube Filled With a Porous Medium
,”
Transp. Porous Media
,
89
, pp.
237
249
.10.1007/s11242-011-9766-1
25.
Zehener
,
P.
,
1970
, “
Waermeleitfahigkeit won Schuettungen be MassigenTemperaturea
,”
Chem.-Ing.-Tech.
,
42
, pp.
933
941
.10.1002/cite.330421408
26.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
, pp
1591
159
.10.1063/1.869307
27.
Liu
,
C.-H.
,
Lin
,
K.-H.
,
Mai
,
H.-C.
, and
Lin
,
C.-A.
,
2010
, “
Thermal Boundary Conditions for Thermal Lattice Boltzmann Simulations
,”
Comput. Math. Appl.
,
59
, pp.
2178
2193
.10.1016/j.camwa.2009.08.043
28.
Bao
,
J.
,
Yuan
,
P.
, and
Schaefer
,
L.
,
2008
, “
A Mass Conserving Boundary Condition for the Lattice Boltzmann Equation Method
,”
J. Comput. Phys.
,
227
, pp.
8472
8487
.10.1016/j.jcp.2008.06.003
29.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2005
, “
Flow, Thermal, and Entropy Generation Characteristics Inside a Porous Channel With Viscous Dissipation
,”
Int. J. Therm. Sci.
,
44
, pp.
21
32
.10.1016/j.ijthermalsci.2004.05.001
30.
Alazmi
,
B.
, and
Vafai
,
K.
,
2000
, “
Analysis of Fluid Flow and Heat Transfer Interfacial Conditions Between a Porous Medium and a Fluid Layer
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1735
1749
.10.1016/S0017-9310(00)00217-9
You do not currently have access to this content.