Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding water droplets via coalescence-induced droplet jumping at length scales below the capillary length. However, achieving optimal surface designs for such behavior requires capturing the details of transport processes that is currently lacking. While comprehensive models have been developed for flat hydrophobic surfaces, they cannot be directly applied for condensation on micro/nanostructured surfaces due to the dynamic droplet-structure interactions. In this work, we developed a unified model for dropwise condensation on superhydrophobic structured surfaces by incorporating individual droplet heat transfer, size distribution, and wetting morphology. Two droplet size distributions were developed, which are valid for droplets undergoing coalescence-induced droplet jumping, and exhibiting either a constant or variable contact angle droplet growth. Distinct emergent droplet wetting morphologies, Cassie jumping, Cassie nonjumping, or Wenzel, were determined by coupling of the structure geometry with the nucleation density and considering local energy barriers to wetting. The model results suggest a specific range of geometries (0.5–2 μm) allowing for the formation of coalescence-induced jumping droplets with a 190% overall surface heat flux enhancement over conventional flat dropwise condensing surfaces. Subsequently, the effects of four typical self-assembled monolayer promoter coatings on overall heat flux were investigated. Surfaces exhibiting coalescence-induced droplet jumping were not sensitive (<5%) to the coating wetting characteristics (contact angle hysteresis), which was in contrast to surfaces relying on gravitational droplet removal. Furthermore, flat surfaces with low promoter coating contact angle hysteresis (<2 deg) outperformed structured superhydrophobic surfaces when the length scale of the structures was above a certain size (>2 μm). This work provides a unified model for dropwise condensation on micro/nanostructured superhydrophobic surfaces and offers guidelines for the design of structured surfaces to maximize heat transfer. Keywords: superhydrophobic condensation, jumping droplets, droplet coalescence, condensation optimization, environmental scanning electron microscopy; micro/nanoscale water condensation, condensation heat transfer.

References

References
1.
Schmidt
,
E.
,
Schurig
,
W.
, and
Sellschopp
,
W.
,
1930
, “
Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform
,”
Forsch. Ingenieurwes.
,
1
(
2
), pp.
53
63
.10.1007/BF02641051
2.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Growth Dynamics During Dropwise Condensation on Nanostructured Superhydrophobic Surfaces
,”
3rd Micro/Nanoscale Heat and Mass Transfer International Conference
,
Atlanta, GA
.
3.
Ma
,
X. H.
,
Rose
,
J. W.
,
Xu
,
D. Q.
,
Lin
,
J. F.
, and
Wang
,
B. X.
,
2000
, “
Advances in Dropwise Condensation Heat Transfer: Chinese Research
,”
Chem. Eng. J.
,
78
(
2–3
), pp.
87
93
.10.1016/S1385-8947(00)00155-8
4.
Enright
,
R.
,
Dou
,
N.
,
Miljkovic
,
N.
,
Nam
,
Y.
, and
Wang
,
E. N.
,
2012
, “
Condensation on Superhydrophobic Copper Oxide Nanostructures
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091012
.10.1115/1.4024424
5.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1964
, “
Heat-Transfer Measurements During Dropwise Condensation of Steam
,”
Int. J. Heat Mass Transfer
,
7
, pp.
272
273
.10.1016/0017-9310(64)90095-X
6.
Welch
,
J.
, and
Westwater
,
J. W.
,
1961
, “
Microscopic Study of Dropwise Condensation
,” Proceedings of the Second International Heat Transfer Conference, Vol. 2, pp. 302–309.
7.
Ma
,
X. H.
,
Wang
,
S. F.
,
Lan
,
Z.
,
Peng
,
B. L.
,
Ma
,
H. B.
, and
Cheng
,
P.
,
2012
, “
Wetting Mode Evolution of Steam Dropwise Condensation on Superhydrophobic Surface in the Presence of Noncondensable Gas
,”
ASME J. Heat Transfer
,
134
(
2
), p.
021501
.10.1115/1.4005094
8.
Glicksman
,
L. R.
, and
Hunt
,
A. W.
,
1972
, “
Numerical Simulation of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
15
(
11
), pp.
2251
2269
.10.1016/0017-9310(72)90046-4
9.
Love
,
J. C.
,
Estroff
,
L. A.
,
Kriebel
,
J. K.
,
Nuzzo
,
R. G.
, and
Whitesides
,
G. M.
,
2005
, “
Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology
,”
Chem. Rev.
,
105
(
4
), pp.
1103
1169
.10.1021/cr0300789
10.
Andrews
,
H. G.
,
Eccles
,
E. A.
,
Schofield
,
W. C. E.
, and
Badyal
,
J. P. S.
,
2011
, “
Three-Dimensional Hierarchical Structures for Fog Harvesting
,”
Langmuir
,
27
(
7
), pp.
3798
3802
.10.1021/la2000014
11.
Leach
,
R. N.
,
Stevens
,
F.
,
Langford
,
S. C.
, and
Dickinson
,
J. T.
,
2006
, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
,
22
(
21
), pp.
8864
8872
.10.1021/la061901+
12.
Boreyko
,
J. B.
, and
Chen
,
C. H.
,
2009
, “
Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
103
(
18
),
p. 184501
.10.1103/PhysRevLett.103.184501
13.
Lafuma
,
A.
, and
Quere
,
D.
,
2003
, “
Superhydrophobic States
,”
Nature Mater.
,
2
(
7
), pp.
457
460
.10.1038/nmat924
14.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A. G.
, and
Joshi
,
Y.
,
2010
, “
Visualization of Droplet Departure on a Superhydrophobic Surface and Implications to Heat Transfer Enhancement During Dropwise Condensation
,”
Appl. Phys. Lett.
,
97
(
3
), p.
033104
.10.1063/1.3460275
15.
Graham
,
C.
, and
Griffith
,
P.
,
1973
, “
Drop Size Distributions and Heat-Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
337
346
.10.1016/0017-9310(73)90062-8
16.
Rose
,
J. W.
,
1967
, “
On the Mechanism of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
10
, pp.
755
762
.10.1016/0017-9310(67)90135-4
17.
Anderson
,
D. M.
,
Gupta
,
M. K.
,
Voevodin
,
A. A.
,
Hunter
,
C. N.
,
Putnam
,
S. A.
,
Tsukruk
,
V. V.
, and
Fedorov
,
A. G.
,
2012
, “
Using Amphiphilic Nanostructures To Enable Long-Range Ensemble Coalescence and Surface Rejuvenation in Dropwise Condensation
,”
ACS Nano
,
6
(
4
), pp.
3262
3268
.10.1021/nn300183d
18.
Boreyko
,
J. B.
,
Zhao
,
Y. J.
, and
Chen
,
C. H.
,
2011
, “
Planar Jumping-Drop Thermal Diodes
,”
Appl. Phys. Lett.
,
99
(
23
), p.
234105
.10.1063/1.3666818
19.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A.
, and
Joshi
,
Y.
,
2010
, “
ESEM Imaging of Condensation on a Nanostructured Superhydrophobic Surface
,”
ASME J. Heat Transfer
,
132
(
8
), p.
080904
.10.1115/1.4001752
20.
Narhe
,
R. D.
, and
Beysens
,
D. A.
,
2006
, “
Water Condensation on a Super-Hydrophobic Spike Surface
,”
Europhys. Lett.
,
75
(
1
), pp.
98
104
.10.1209/epl/i2006-10069-9
21.
Varanasi
,
K. K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Yang
,
W. S.
, and
Deng
,
T.
,
2009
, “
Spatial Control in the Heterogeneous Nucleation of Water
,”
Appl. Phys. Lett.
,
95
(
9
), pp.
094101
.10.1063/1.3200951
22.
Enright
,
R.
,
Miljkovic
,
N.
,
Al-Obeidi
,
A.
,
Thompson
,
C. V.
, and
Wang
,
E. N.
,
2012
, “
Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale
,”
Langmuir
,
28
(
40
), pp. 14424–14432.
23.
Miljkovic
,
N.
,
Enright
,
R.
,
Maroo
,
S. C.
,
Cho
,
H. J.
, and
Wang
,
E. N.
,
2011
, “
Liquid Evaporation on Superhydrophobic and Superhydrophilic Nanostructured Surfaces
,”
J. Heat Transfer
,
133
(
8
), p.
080903
.10.1115/1.4003890
24.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
6
(
2
), pp.
1776
1785
.10.1021/nn205052a
25.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1966
, “
A Theory of Heat Transfer by Dropwise Condensation
,”
Proceedings of the Third International Heat Transfer Conference
, Vol.
2
, pp.
362
375
.
26.
Rose
,
J. W.
, and
Glicksman
,
L. R.
,
1973
, “
Dropwise Condensation—The Distribution of Drop Sizes
,”
Int. J. Heat Mass Transfer
,
16
, pp.
411
425
.10.1016/0017-9310(73)90068-9
27.
Tanaka
,
H.
, and
Tsuruta
,
T.
,
1984
, “
A Microscopic Study of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
27
(
3
), pp.
327
335
.10.1016/0017-9310(84)90280-1
28.
AbuOrabi
,
M.
,
1998
, “
Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
81
87
.10.1016/S0017-9310(97)00094-X
29.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
133
(
8
),
p. 081502
.10.1115/1.4003742
30.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
31.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
, pp.
988
994
.10.1021/ie50320a024
32.
Rykaczewski
,
K.
, and
Scott
,
J. H. J.
,
2011
, “
Methodology for Imaging Nano-to-Microscale Water Condensation Dynamics on Complex Nanostructures
,”
ACS Nano,
5
(
7
), pp.
5962
5968
.10.1021/nn201738n
33.
Rykaczewski
,
K.
,
Scott
,
J. H. J.
,
Rajauria
,
S.
,
Chinn
,
J.
,
Chinn
,
A. M.
, and
Jones
,
W.
,
2011
, “
Three Dimensional Aspects of Droplet Coalescence During Dropwise Condensation on Superhydrophobic Surfaces
,”
Soft Matter
,
7
(
19
), pp.
8749
8752
.10.1039/c1sm06219k
34.
Das
,
A. K.
,
Kilty
,
H. P.
,
Marto
,
P. J.
,
Andeen
,
G. B.
, and
Kumar
,
A.
,
2000
, “
The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
278
286
.10.1115/1.521465
35.
Vemuri
,
S.
,
Kim
,
K. J.
,
Wood
,
B. D.
,
Govindaraju
,
S.
, and
Bell
,
T. W.
,
2006
, “
Long Term Testing for Dropwise Condensation Using Self-Assembled Monolayer Coatings of n-Octadecyl Mercaptan
,”
Appl. Therm. Eng.
,
26
(
4
), pp.
421
429
.10.1016/j.applthermaleng.2005.05.022
36.
Choi
,
W.
,
Tuteja
,
A.
,
Mabry
,
J. M.
,
Cohen
,
R. E.
, and
McKinley
,
G. H.
,
2009
, “
A Modified Cassie-Baxter Relationship to Explain Contact Angle Hysteresis and Anisotropy on Non-Wetting Textured Surfaces
,”
J. Colloid Interface Sci.
,
339
(
1
), pp.
208
216
.10.1016/j.jcis.2009.07.027
37.
Anand
,
S.
, and
Son
,
S. Y.
,
2010
, “
Sub-Micrometer Dropwise Condensation Under Superheated and Rarefied Vapor Condition
,”
Langmuir
,
26
(
22
), pp.
17100
17110
.10.1021/la102642r
38.
Rykaczewski
,
K.
,
Scott
,
J. H. J.
, and
Fedorov
,
A. G.
,
2011
, “
Electron Beam Heating Effects During Environmental Scanning Electron Microscopy Imaging of Water Condensation on Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
98
(
9
), p.
093106
.10.1063/1.3560443
39.
Kaschiev
,
D.
,
2000
,
Nucleation: Basic Theory With Applications
,
Butterworth Heinemann
,
Oxford, UK
.
40.
Tam
,
D.
,
von Arnim
,
V.
,
McKinley
,
G. H.
, and
Hosoi
,
A. E.
,
2009
, “
Marangoni Convection in Droplets on Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
624
, pp.
101
123
.10.1017/S0022112008005053
41.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Taylor and Francis
,
New York
.
42.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
, Columbia University Press, New York.
43.
Umur
,
A.
, and
Griffith
,
P.
,
1965
, “
Mechanism of Dropwise Condensation
,”
ASME J. Heat Transfer
,
87
(
2
), pp.
275
282
.10.1115/1.3689090
44.
Dimitrakopoulos
,
P.
, and
Higdon
,
J. J. L.
,
1999
, “
On The Gravitational Displacement of Three-Dimensional Fluid Droplets From Inclined Solid Surfaces
,”
J. Fluid Mech.
,
395
, pp.
181
209
.10.1017/S0022112099005844
45.
Kim
,
H. Y.
,
Lee
,
H. J.
, and
Kang
,
B. H.
,
2002
, “
Sliding of Liquid Drops Down an Inclined Solid Surface
,”
J. Colloid Interface Sci
,
247
(
2
), pp.
372
380
.10.1006/jcis.2001.8156
46.
Raj
,
R.
,
Enright
,
R.
,
Zhu
,
Y.
,
Adera
,
S.
, and
Wang
,
E. N.
,
2012
, “
Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces
,”
Langmuir
,
28
(
45
), pp. 15777–15788.
47.
Chen
,
C. H.
,
Cai
,
Q. J.
,
Tsai
,
C. L.
,
Chen
,
C. L.
,
Xiong
,
G. Y.
,
Yu
,
Y.
, and
Ren
,
Z. F.
,
2007
, “
Dropwise Condensation on Superhydrophobic Surfaces With Two-Tier Roughness
,”
Appl. Phys. Lett.
,
90
(
17
), p.
173108
.10.1063/1.2731434
48.
Lau
,
K. K. S.
,
Bico
,
J.
,
Teo
,
K. B. K.
,
Chhowalla
,
M.
,
Amaratunga
,
G. A. J.
,
Milne
,
W. I.
,
McKinley
,
G. H.
, and
Gleason
,
K. K.
,
2003
, “
Superhydrophobic Carbon Nanotube Forests
,”
Nano Lett
,
3
(
12
), pp.
1701
1705
.10.1021/nl034704t
49.
Rykaczewski
,
K.
,
2012
, “
Microdroplet Growth Mechanism During Water Condensation on Superhydrophobic Surfaces
,”
Langmuir
,
28
(
20
), pp.
7720
7729
.10.1021/la301618h
50.
Rykaczewski
,
K.
,
Osborn
,
W. A.
,
Chinn
,
J.
,
Walker
,
M. L.
,
Scott
,
J. H. J.
,
Jones
,
W.
,
Hao
,
C.
,
Yao
,
S.
, and
Wang
,
Z.
,
2012
, “
How Nanorough is Rough Enough to Make a Surface Superhydrophobic During Water Condensation?
,”
Soft Matter
,
8
, pp.
8786
8794
.10.1039/c2sm25502b
51.
Rose
,
J. W.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., A
,
216
(
A2
), pp.
115
128
.10.1243/09576500260049034
52.
Woodruff
,
D. W.
, and
Westwater
,
J. W.
,
1981
, “
Steam Condensation on Various Gold Surfaces
,”
ASME J. Heat Transfer
,
103
(
4
), pp.
685
692
.10.1115/1.3244527
53.
Wilkins
,
D. G.
,
Bromley
,
L. A.
, and
Read
,
S. M.
,
1973
, “
Dropwise and Filmwise Condensation of Water Vapor on Gold
,”
AIChE J.
,
19
(
1
), pp.
119
123
.10.1002/aic.690190117
54.
Chen
,
X.
,
Wu
,
J.
,
Ma
,
R.
,
Hua
,
M.
,
Koratkar
,
N.
,
Yao
,
S.
, and
Wang
,
Z.
,
2011
, “
Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
,”
Adv. Funct. Mater.
,
21
, pp.
4617
4623
.10.1002/adfm.201101302
55.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Liquid Freezing Dynamics on Hydrophobic and Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
134
(
8
), p. 080902.
56.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2011
, “
Modeling and Optimization of Hybrid Solar Thermoelectric Systems With Thermosyphons
,”
Sol. Energy
,
85
(
11
), pp.
2843
2855
.10.1016/j.solener.2011.08.021
57.
McCarthy
,
M.
,
Peters
,
T.
,
Allison
,
J.
,
Espinosa
,
A.
,
Jenicek
,
D.
,
Kariya
,
A.
,
Koveal
,
C.
,
Brisson
,
J. G.
,
Lang
,
J. H.
, and
Wang
,
E. N.
,
2010
, “
Design and Analysis of High-Performance Air-Cooled Heat Exchanger With an Integrated Capillary-Pumped Loop Heat Pipe
,”
Intersoc C Thermal T
.
58.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Letters
,
13
(
1
), pp.
179
187
.
59.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bulletin
,
38
(
5
), pp.
397
406
.
You do not currently have access to this content.