The growing trend in miniaturization of electronics has generated a need for efficient thermal management of these devices. Boiling has the ability to dissipate a high heat flux while maintaining a small temperature difference. A vapor chamber with pool boiling offers an effective way to provide cooling and to maintain temperature uniformity. The objective of the current work is to investigate pool boiling performance of ethanol on enhanced microchannel surfaces. Ethanol is an attractive working fluid due to its better heat transfer performance and higher heat of vaporization compared to refrigerants, and lower normal boiling point compared to water. The saturation temperature of ethanol can be further reduced to temperatures suitable for electronics cooling by lowering the pressure. Experiments were performed at four different absolute pressures, 101.3 kPa, 66.7 kPa, 33.3 kPa, and 16.7 kPa using different microchannel surface configurations. Heat dissipation in excess of 900 kW/m2 was obtained while maintaining the wall surface below 85 °C at 33 kPa. Flammability, toxicity, and temperature overshoot issues need to be addressed before practical implementation of ethanol-based cooling systems can occur.

References

References
1.
McGillis
,
W. R.
,
Carey
,
V. P.
,
Fitch
,
J. S.
, and
Hamburgen
,
W. R.
,
1991
, “
Pool Boiling Enhancement Techniques for Water at Low Pressure
,”
1991 Proceedings, Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Cat. No.91CH2972-8
, pp.
64
72
.
2.
Pal
,
A.
, and
Joshi
,
Y.
,
2008
, “
Boiling of Water at Sub-Atmospheric Conditions With Enhanced Structures: Effect of Liquid Fill Volume
,”
ASME J. of Elect. Packag.
,
130
(
1
), p.
011010
.10.1115/1.2837523
3.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
4.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.10.1016/j.nucengdes.2010.07.006
5.
Sloan
,
A.
,
Penley
,
S.
, and
Wirtz
,
R. A.
,
2009
, “
Sub-Atmospheric Pressure Pool Boiling of Water on a Screen-Laminate Enhanced Surface
,”
2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, p.
8
.
6.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2009
, “
Performance of Different Structured Surfaces in Nucleate Pool Boiling
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3643
3653
.10.1016/j.applthermaleng.2009.06.020
7.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.10.1016/j.ijthermalsci.2011.06.009
8.
Kwark
,
S. M.
,
Amaya
,
M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2010
, “
Effects of Pressure, Orientation, and Heater Size on Pool Boiling of Water With Nanocoated Heaters
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5199
5208
.10.1016/j.ijheatmasstransfer.2010.07.040
9.
Chan
,
M. A.
,
Yap
,
C. R.
, and
Kim Choon
,
N.
,
2010
, “
Pool Boiling Heat Transfer of Water on Finned Surfaces at Near Vacuum Pressures
,”
ASME J. Heat Transfer
,
132
(
3
), p.
031501
.10.1115/1.4000054
10.
Anderson
,
T. M.
, and
Mudawar
,
I.
,
1989
, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
752
759
.10.1115/1.3250747
11.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous, Square Pin-Finned Surfaces in FC-72
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
23
35
.10.1016/S0017-9310(02)00257-0
12.
Kim
,
J. H.
,
Kashinath
,
M. R.
,
Kwark
,
S. M.
, and
You
,
S. M.
,
2007
, “
Optimization of Microporous Structures in Enhancing Pool Boiling Heat Transfer of Saturated R-123, FC-72 and Water
,”
Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference 2007
,
3
, pp.
349
356
.
13.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2010
, “
Pool Boiling of Perfluorocarbon Mixtures on Silicon Surfaces
,”
Int J. Heat Mass Transfer
,
53
(
23–24
), pp.
5596
5604
.10.1016/j.ijheatmasstransfer.2010.06.034
14.
Guglielmini
,
G.
,
Misale
,
M.
, and
Schenone
,
C.
,
2002
, “
Boiling of Saturated FC-72 on Square Pin Fin Arrays
,”
Int. J. Therm. Sci.
,
41
(
7
), pp.
599
608
.10.1016/S1290-0729(02)01353-4
15.
Honda
,
H.
, and
Wei
,
J. J.
,
2004
, “
Enhanced Boiling Heat Transfer From Electronic Components by Use of Surface Microstructures
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
159
169
.10.1016/S0894-1777(03)00035-9
16.
Kubo
,
H.
,
Takamatsu
,
H.
, and
Honda
H.
,
1999
, “
Effects of Size and Number Density of Micro-Reentrant Cavities on Boiling Heat Transfer From a Silicon Chip Immersed in Degassed and Gas-Dissolved FC-72
,”
J. Enhanced Heat Transfer
,
16
, pp.
151
160
.
17.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Nawata
,
Y.
, and
Nishijima
,
T.
,
1976
, “
Studies on Nucleate Pool Boiling at Low Pressures
,”
Heat Transfer—Jpn. Res.
,
5
(
2
), pp.
66
89
.
18.
McGillis
,
W. R.
,
Carey
,
V. P.
,
Fitch
,
J. S.
, and
Hamburgen
,
W. R.
,
1992
, “
Boiling Binary Mixtures at Subatmospheric Pressures
,”
InterSociety Conference on Thermal Phenomena in Electronic Systems. I-THERM III, Cat. No.92CH3096-5
, pp.
127
136
.
19.
Sakashita
,
H.
,
Ono
,
A.
, and
Nakabayashi
,
Y.
,
2010
, “
Measurements of Critical Heat Flux and Liquid–Vapor Structure Near the Heating Surface in Pool Boiling of 2-Propanol/Water Mixtures
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1554
1562
.10.1016/j.ijheatmasstransfer.2009.11.028
20.
Bailey
,
W.
,
Young
,
E.
,
Beduz
,
C.
, and
Yang
,
Y.
,
2006
, “
Pool Boiling Study on Candidature of Pentane, Methanol and Water for Near Room Temperature Cooling
,”
The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM '06
, pp.
599
603
.
21.
Warrier
,
P.
,
Sathyanarayana
,
A.
,
Joshi
,
Y.
, and
Teja
,
A. S.
,
2011
, “
Screening and Evaluation of Mixture Formulations for Electronics Thermal Management Using Pool Boiling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
9
), pp.
1387
1394
.10.1109/TCPMT.2011.2162069
22.
Pastuszko
,
R.
,
2012
, “
Pool Boiling for Extended Surfaces With Narrow Tunnels—Visualization and a Simplified Model
,”
Exp. Therm. Fluid Sci.
,
38
, pp.
149
164
.10.1016/j.expthermflusci.2011.12.004
23.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052902
.10.1115/1.4003046
24.
Kandlikar
,
S. G.
,
1991
, “
Development of a Flow Boiling Map for Subcooled and Saturated Flow Boiling of Different Fluids in Circular Tubes
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
190
200
.10.1115/1.2910524
You do not currently have access to this content.