A variety of predictive correlations for critical heat flux (CHF) are examined in light of the growing body of work exploring enhanced flow boiling CHF via cross-sectional expansion. The analysis considers the effect of a small perturbation of the diameter of a circular microchannel on the predictions made by the selected criteria, and seeks to demonstrate an optimum rate of expansion. It is demonstrated that a nonzero diameter expansion necessarily improves performance under several criteria for critical heat flux, and an optimum expansion rate exists for many of these criteria. CHF relations are seen to follow a few distinct types, and those relations which contemplate effects which may directly influence CHF, such as pressure and phase velocity, tend to better reflect the experimentally demonstrated effect of the expanding channel diameter on CHF. Experimental data are examined from several investigators, including the authors' group, and the validity of both the criteria and the analysis is compared to the data.

References

1.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1216
1225
.10.1016/j.ijheatmasstransfer.2007.03.002
2.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
,
2006
, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
765
774
.10.1016/j.expthermflusci.2006.03.006
3.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10
), pp.
2045
2059
.10.1016/j.ijheatmasstransfer.2003.12.006
4.
Katto
,
Y.
, and
Ohno
,
H.
,
1984
, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1641
1648
.10.1016/0017-9310(84)90276-X
5.
Zhang
,
W.
,
Hibiki
,
T.
,
Mishima
,
K.
, and
Mi
,
Y.
,
2005
, “
Correlation of Critical Heat Flux for Flow Boiling of Water in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1058
1072
.10.1016/j.ijheatmasstransfer.2005.09.004
6.
Basu
,
S.
,
Ndao
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2011
, “
Flow Boiling of R134a in Circular Microtubes—Part II: Study of Critical Heat Flux Condition
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051503
.10.1115/1.4003160
7.
Chen
,
T.
, and
Garimella
,
S. V.
,
2012
, “
A Study of Critical Heat Flux During Flow Boiling in Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011504
.10.1115/1.4004715
8.
Lee
,
P. C.
, and
Pan
,
C.
,
2007
, “
Boiling Heat Transfer and Two-Phase Flow of Water in a Single Shallow Microchannel With a Uniform or Diverging Cross Section
,”
J. Micromech. Microeng.
,
18
(
2
), p.
025005
.10.1088/0960-1317/18/2/025005
9.
Lu
,
C. T.
, and
Pan
,
C.
,
2008
, “
Stabilization of Flow Boiling in Microchannel Heat Sinks With a Diverging Cross-Section Design
,”
J. Micromech. Microeng.
,
18
(
7
), p.
075035
.10.1088/0960-1317/18/7/075035
10.
Lu
,
C. T.
, and
Pan
,
C.
,
2009
, “
A Highly Stable Microchannel Heat Sink for Convective Boiling
,”
J. Micromech. Microeng.
,
19
(
5
), p.
055013
.10.1088/0960-1317/19/5/055013
11.
Lu
,
C. T.
, and
Pan
,
C.
,
2011
, “
Convective Boiling in a Parallel Microchannel Heat Sink With a Diverging Cross Section and Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
810
815
.10.1016/j.expthermflusci.2010.08.018
12.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.10.1115/1.2150837
13.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.10.1115/1.2908431
14.
Odom
,
B. A.
,
Miner
,
M. J.
,
Ortiz
,
C. A.
,
Sherbeck
,
J.
,
Prasher
,
R.
, and
Phelan
,
P. E.
,
2011
, “
Microchannel Two-Phase Flow Oscillation Control With an Adjustable Inlet Orifice
,”
International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2011-62078 [ASME J. Heat Transfer (to be published)].
15.
Balasubramanian
,
K.
,
Lee
,
P. C.
,
Jin
,
L.
,
Chou
,
S.
,
Teo
,
C.
, and
Gao
,
S.
,
2011
, “
Experimental Investigations of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels—A Comparative Study
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2413
2421
.10.1016/j.ijthermalsci.2011.07.007
16.
Hwang
,
J.
,
Tseng
,
F.
, and
Pan
,
C.
,
2005
, “
Ethanol–CO2 Two-Phase Flow in Diverging and Converging Microchannels
,”
Int. J. Multiphase Flow
,
31
(
5
), pp.
548
570
.10.1016/j.ijmultiphaseflow.2005.01.011
17.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
21
), pp.
5204
5212
.10.1016/j.ijheatmasstransfer.2009.04.025
18.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
ASME International Conference on Microchannels and Minichannels
, Paper No. ICMM2005-75143.
19.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Odom
,
B. A.
,
Ortiz
,
C. A.
,
Prasher
,
R. S.
, and
Sherbeck
,
J. A.
,
2013
, “
Optimized Expanding Microchannel Geometry for Flow Boiling
,”
ASME J. Heat Transfer
,
135
(
4
), p.
042901
.10.1115/1.4023260
20.
Bowring
,
R. W.
,
1972
, “
A Simple but Accurate Round Tube Uniform Heat Flux Dryout Correlation over the Pressure Range 0.7-17 MN/m2 (100-2500 psia)
,” UKAEA, Winfrith, England, Report No. AEEW-R789.
21.
Wu
,
Z.
,
Li
,
W.
, and
Ye
,
S.
,
2011
, “
Correlations for Saturated Critical Heat Flux in Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
379
389
.10.1016/j.ijheatmasstransfer.2010.09.033
22.
Katto
,
Y.
,
1978
, “
A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
12
), pp.
1527
1542
.10.1016/0017-9310(78)90009-1
23.
Qi
,
S. L.
,
Zhang
,
P.
,
Wang
,
R. Z.
, and
Xu
,
L. X.
,
2007
, “
Flow Boiling of Liquid Nitrogen in Micro-Tubes: Part II—Heat Transfer Characteristics and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
25
), pp.
5017
5030
.10.1016/j.ijheatmasstransfer.2007.08.017
24.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
844
851
.10.1115/1.2712852
25.
Revellin
,
R.
, and
Thome
,
J. R.
,
2009
, “
Critical Heat Flux During Flow Boiling in Microchannels: A Parametric Study
,”
Heat Transfer Eng.
,
30
(
7
), pp.
556
563
.10.1080/01457630802594879
26.
Kandlikar
,
S.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
27.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2010
,
NIST Standard Reference Database 23: refprop version 9.0
, “Reference Fluid Thermodynamic and Transport Properties,” Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD.
28.
Wagner
,
W.
, and
Pruss
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
585
.10.1063/1.1461829
29.
Tillner-Roth
,
R.
, and
Baehr
,
H. D.
,
1994
, “
An International Standard Formulation of the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures From 170 K to 455 K at Pressures up to 70 MPa
,”
J. Phys. Chem. Ref. Data
,
23
(
5
), pp.
657
729
.10.1063/1.555958
30.
Miner
,
M. J.
,
Ortiz
,
C. A.
, and
Phelan
,
P. E.
,
2012
, “
Experimental Measurements of Critical Heat Flux in Expanding Microchannel Arrays
,”
ASME J. Heat Transfer
(in press).
You do not currently have access to this content.