In this paper, velocity profile, temperature profile, and the corresponding Poiseuille and Nusselt numbers for a flow in a microtube and in a slit-channel are derived analytically with an isoflux thermal boundary condition. The flow is assumed to be hydrodynamically and thermally fully developed. The effects of rarefaction, viscous dissipation, axial conduction are included in the analysis. For the implementation of the rarefaction effect, two different second-order slip models (Karniadakis and Deissler model) are used for the slip-flow and temperature-jump boundary conditions together with the thermal creep at the wall. The effect of the thermal creep on the Poiseuille and Nusselt numbers are discussed. The results of the present study are important (i) to gain the fundamental understanding of the effect of thermal creep on convective heat transfer characteristics of a microchannel fluid flow and (ii) for the optimum design of thermal systems which includes convective heat transfer in a microchannel especially operating at low Reynolds numbers.

References

References
1.
Yaman
,
M.
,
Khudiyev
,
T.
,
Ozgur
,
E.
,
Kanik
,
M.
,
Aktas
,
O.
,
Ozgur
,
E. O.
,
Deniz
,
H.
,
Korkut
,
E.
, and
Bayindir
,
M.
,
2011
, “
Arrays of Indefinitely Long Uniform Nanowires and Nanotubes
,”
Nature Mater.
,
10
(
7
), pp.
494
501
.10.1038/nmat3038
2.
Colin
,
S.
,
2004
, “
Validation of a Second-Order Slip Flow Model in Rectangular Microchannels
,”
Heat Transfer Eng.
,
25
(
3
), pp.
23
30
.10.1080/01457630490280047
3.
Colin
,
S.
,
2005
, “
Rarefaction and Compressibility Effects on Steady and Transient Gas Flows in Microchannels
,”
Microfluid. Nanofluid.
,
1
, pp.
268
279
.10.1007/s10404-004-0002-y
4.
Weng
,
H. C.
,
2010
. “
Laminar, Transitional and Turbulent Friction Factors for Gas Flows in Smooth and Rough Microtubes
,”
Int. J. Therm. Sci.
,
49
, pp.
248
255
.10.1016/j.ijthermalsci.2009.07.025
5.
Yang
,
Y.
,
Morini
,
G. L.
,
Lorenzini
,
M.
,
Hong
,
C.
,
Asako
,
Y.
, and
Brandner
,
J. J.
,
2012
, “
Transitional and Turbulent Convective Heat Transfer compressible Gas Flows Through Microtubes
,”
Proceedings of the ASME 2012 10th International Conference on Nanochannles, Microchannels and Minichannels
, ICNMM2012,
Puerto Rico, USA
, Paper No. 73261, July 8–12.
6.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulations
,
Springer
,
New York
, pp.
51
74
, 167–172.
7.
Deissler
,
R. G.
,
1964
, “
An Analysis of Second-Order Slip Flow and Temperature-Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
7
, pp.
681
694
.10.1016/0017-9310(64)90161-9
8.
Duan
,
Z.
,
2012
, “
Second-Order Gaseous Slip Flow Models in Long Circular and Noncircular Microchannels and Nanochannels
,”
Microfluid. Nanofluid.
,
12
, pp.
805
820
.10.1007/s10404-011-0924-0
9.
Weng
,
H. C.
, and
Chen
,
C.-K.
,
2008
, “
A Challenge in Navier–Stokes Based Continuum Modeling: Maxwell–Burnett Slip Law
,”
Phys. Fluids
,
20
, p.
106101
.10.1063/1.2998451
10.
Cetin
,
B.
,
Yazicioglu
,
A.
, and
Kakac
,
S.
,
2008
, “
Fluid Flow in Microtubes With Axial Conduction Including Rarefaction and Viscous Dissipation
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
535
544
.10.1016/j.icheatmasstransfer.2008.01.003
11.
Aubert
,
C.
, and
Colin
,
S.
,
2001
, “
High-Order Boundary Conditions for Gaseous Flows in Rectangular Microducts
,”
Microscale Thermophys. Eng.
,
5
, pp.
41
54
.10.1080/108939501300005367
12.
Niazmand
,
H.
,
Amiri-Jaghargh
,
A.
, and
Renksizbulut
,
M.
,
2010
, “
Slip-Flow and Heat Transfer in Isoflux Rectangular Microchannels With Thermal Creep Effects
,”
J. Appl. Fluid Mech.
,
3
(
2
), pp.
33
41
, Available at www.jafmonline.net
13.
Amiri-Jaghargh
,
A.
,
Niazmand
,
H.
, and
Renksizbulut
,
M.
,
2010
, “
Cooling in a Constant Wall Temperature Microchannels With Thermal Creep Effects
,”
Proceedings of the ASME 8th International Conference on Nanochannles, Microchannels and Minichannels, ICNMM2010
,
Montreal, Canada
, Paper No. 30770, August 1–5.
14.
Ameel
,
T. A.
,
Barron
,
R. F.
,
Wang
,
X. M.
, and
Warrington
,
R. O.
,
1997
, “
Laminar Forced Convection in a Circular Tube With Constant Heat Flux and Slip Flow
,”
Microscale Thermophys. Eng.
,
1
, pp.
303
320
.10.1080/108939597200160
15.
Chen
,
C. S.
, and
Kuo
,
W. J.
,
2004
, “
Heat Transfer Characteristics of Gaseous Flow in Long Mini- and Microtubes
,”
Numer. Heat Transfer, Part A
,
46
(
5
), pp.
497
514
.10.1080/10407780490463773
16.
Aydin
,
O.
, and
Avci
,
M.
,
2006
, “
Analysis of Micro-Graetz Problem in a Microtube
,”
Nanoscale Microscale Thermophys. Eng.
,
10
(
4
), pp.
345
358
.10.1080/15567260601009197
17.
Cetin
,
B.
,
Yazicioglu
,
A.
, and
Kakac
,
S.
,
2009
, “
Slip-Flow Heat Transfer in Microtubes With Axial Conduction and Viscous Dissipation—An Extended Graetz Problem
,”
Int. J. Therm. Sci.
,
48
, pp.
1673
1678
.10.1016/j.ijthermalsci.2009.02.002
18.
Çetin
,
B.
,
Yuncu
,
H.
, and
Kakac
,
S.
,
2006
, “
Gaseous Flow in Microchannels With Viscous Dissipation
,”
Int. J. Transp. Phenom.
,
8
, pp.
297
315
.
19.
Xiao
,
N.
,
Elsnab
,
J.
, and
Ameel
,
T.
,
2009
, “
Microtube Gas Flows With Second-Order Slip Flow and Temperature Jump Boundary Conditions
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
243
251
.10.1016/j.ijthermalsci.2008.08.007
20.
Cetin
,
B.
, and
Bayer
,
O.
,
2011
, “
Evaluation of Nusselt Number for a Flow in a Microtube Using Second-Order Slip Model
,”
Therm. Sci.
,
15
(
Suppl. 1
), pp.
103
109
.10.2298/TSCI11S1103C
21.
Cetin
,
B.
,
2012
, “
Evaluation of Nusselt Number for a Flow in a Microtube With Second-Order Model Including Thermal Creep
,”
Proceedings of the ASME 10th International Conference on Nanochannles, Microchannels and Minichannels, ICNMM2012
,
Puerto Rico, USA
, Paper No. 73321, July 8–12.
22.
Xue
,
H.
,
Ji
,
H.
, and
Shu
,
C.
,
2003
, “
Prediction of Flow and Heat Transfer Characteristics in Micro-Couette Flow
,”
Microscale Thermophys. Eng.
,
7
(
1
), pp.
51
68
.10.1080/10893950390150430
23.
Jeong
,
H. E.
, and
Jeong
,
J. T.
,
2006
, “
Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannels
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2151
2157
.10.1016/j.ijheatmasstransfer.2005.11.026
24.
Roy
,
S.
, and
Chakraborty
,
S.
,
2007
, “
Near-Wall Effects in Micro Scale Couette Flow and Heat Transfer in the Maxwell-Slip Regime
,”
Microfluid. Nanofluid.
,
3
(
4
), pp.
437
449
.10.1007/s10404-006-0132-5
25.
Niazmand
,
H.
, and
Rahimi
,
B.
,
2010
, “
High Order Slip and Thermal Creep Effects in Micro Channel Natural Convection
,”
Proceedings of the ASME 8th International Conference on Nanochannles, Microchannels and Minichannels, ICNMM2010
,
Montreal, Canada
, Paper No. 30688, August 1–5.
26.
Weng
,
H. C.
, and
Chen
,
C.-K.
,
2008
, “
On the Importance of Thermal Creep in Natural Convection Gas Microflow With Wall Heat Fluxes
,”
J. Phys. D: Appl. Phys.
,
41
, p.
115501
.10.1088/0022-3727/41/11/115501
27.
van Rij
,
J.
,
Ameel
,
T.
, and
Harman
,
T.
,
2009
, “
An Evaluation of Secondary Effects on Microchannel Frictional and Convective Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2792
2801
.10.1016/j.ijheatmasstransfer.2009.01.001
28.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2008
, “
Slip Flow Heat Transfer in Annular Microchannels With Constant Heat Flux
,”
ASME J. Heat Transfer
,
130
, p.
092401
.10.1115/1.2946474
29.
Aziz
,
A.
, and
Niedbalski
,
N.
,
2011
, “
Thermally Developing Microtube Gas Flow With Axial Conduction and Viscous Dissipation
,”
Int. J. Therm. Sci.
,
50
, pp.
332
340
.10.1016/j.ijthermalsci.2010.08.003
30.
van Rij
,
J.
,
Harman
,
T.
, and
Ameel
,
T.
,
2007
, “
The Effect of Creep Flow on Two-Dimensional Isoflux Microchannels
,”
Int. J. Therm. Sci.
,
46
, pp.
1095
1103
.10.1016/j.ijthermalsci.2007.04.007
31.
Vick
,
B.
, and
Ozisik
,
M. N.
,
1981
, “
An Exact Analysis of Low Peclet Number Heat Transfer in Laminar Flow With Axial Conduction
,”
Lett. Heat Mass Transfer
,
8
, pp.
1
10
.10.1016/0094-4548(81)90002-3
32.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
John Wiley & Sons
, New York, p.
426
.
33.
Weng
,
H. C.
,
2010
, “
Second-Order Slip Flow and Heat Transfer in a Microchannel
,”
Comput. Commun. Control Autom. (3CA)
,
2
, pp.
13
16
.
You do not currently have access to this content.