A parametric investigation is carried out on the effects of temperature dependent viscosity and thermal conductivity and of viscous dissipation in simultaneously developing laminar flows of liquids in straight microchannels of constant cross sections. Uniform heat flux boundary conditions are specified at the heated walls. A superposition method is proved to be applicable in order to predict the value of the Nusselt number by considering separately the effects of temperature dependent viscosity and those of temperature dependent thermal conductivity. In addition, it is found that the influence of the temperature dependence of thermal conductivity on the value of the Nusselt number is independent of the value of the Brinkman number, i.e., it is the same no matter whether viscous dissipation is negligible or not. Finally, it is demonstrated that, in liquid flows, the main effects on pressure drop of temperature dependent fluid properties can be retained even if only viscosity is allowed to vary with temperature, the other properties being assumed constant. Viscosity is assumed to vary with temperature according to an exponential relation, while a linear dependence of thermal conductivity on temperature is assumed. The other fluid properties are held constant. Two different cross-sectional geometries are considered, corresponding to both axisymmetric (circular) and three-dimensional (square) microchannel geometries. A finite element procedure is employed for the solution of the parabolized momentum and energy equations. Computed axial distributions of the local Nusselt number and of the apparent Fanning friction factor are presented for different values of the viscosity and thermal conductivity Pearson numbers and of the Brinkman number.

References

References
1.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York.
2.
Kakaç
,
S.
,
1987
, “
The Effect of Temperature-Dependent Fluid Properties on Convective Heat Transfer
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakaç
,
R. K.
Shah
,
W.
Aung
, eds.,
Wiley
,
New York
, Chap. 18.
3.
Herwig
,
H.
,
1985
, “
The Effect of Variable Properties on Momentum and Heat Transfer in a Tube With Constant Heat Flux Across the Wall
,”
Int. J. Heat Mass Transfer
,
28
, pp.
423
431
.10.1016/0017-9310(85)90075-4
4.
Herwig
,
H.
,
Voigt
,
M.
, and
Bauhaus
,
F. J.
,
1989
, “
The Effect of Variable Properties on Momentum and Heat Transfer in a Tube With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1907
1915
.10.1016/0017-9310(89)90160-9
5.
Herwig
,
H.
, and
Mahulikar
,
S. P.
,
2006
, “
Variable Property Effects in Single-Phase Incompressible Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
45
, pp.
977
981
.10.1016/j.ijthermalsci.2006.01.002
6.
Mahulikar
,
S. P.
, and
Hervig
,
H.
,
2006
, “
Physical Effects of Laminar Microconvection Due to Variations in Incompressible Fluid Properties
,”
Phys. Fluids
,
18
, p.
073601
.10.1063/1.2210027
7.
Hooman
,
K.
,
Hooman
,
F.
, and
Famouri
,
M.
,
2009
, “
Scaling Effects for Flow in Micro-Channels: Variable Property, Viscous Heating, Velocity Slip, and Temperature Jump
,”
Int. Commun. Heat Mass Transfer
,
36
, pp.
192
196
.10.1016/j.icheatmasstransfer.2008.10.003
8.
Hooman
,
K.
, and
Ejlali
,
A.
,
2010
, “
Effects of Viscous Heating, Fluid Property Variation, Velocity Slip, and Temperature Jump on Convection Through Parallel Plate and Circular Microchannels
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
34
38
.10.1016/j.icheatmasstransfer.2009.09.011
9.
Li
,
Z.
,
Huai
,
X.
,
Tao
,
Y.
, and
Chen
,
H.
,
2007
, “
Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
27
, pp.
2803
2814
.10.1016/j.applthermaleng.2007.02.007
10.
Liu
,
J.
,
Peng
,
X.
, and
Yan
,
W.
,
2007
, “
Numerical Study of Fluid Flow and Heat Transfer in Microchannel Cooling Passages
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1855
1864
.10.1016/j.ijheatmasstransfer.2006.10.004
11.
Nóbrega
,
J. M.
,
Pinho
,
F. T.
,
Oliveira
,
P. J.
, and
Carneiro
,
O. S.
,
2004
, “
Accounting for Temperature Dependent Properties in Viscoelastic Duct Flows
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1141
1158
.10.1016/j.ijheatmasstransfer.2003.10.004
12.
Del Giudice
,
S.
,
Nonino
,
C.
, and
Savino
,
S.
,
2007
, “
Effects of Viscous Dissipation and Temperature Dependent Viscosity in Thermally and Simultaneously Developing Laminar Flows in Microchannels
,”
Int. J. Heat Fluid Flow
,
28
, pp.
15
27
.10.1016/j.ijheatfluidflow.2006.05.007
13.
Nonino
,
C.
,
Del Giudice
,
S.
, and
Savino
,
S.
,
2007
, “
Temperature-Dependent Viscosity and Viscous Dissipation Effects in Simultaneously Developing Flows in Microchannels With Convective Boundary Conditions
,”
ASME J. Heat Transfer
.
129
, pp.
1187
1194
.10.1115/1.2740306
14.
Nonino
,
C.
,
Del. Giudice
,
S.
, and
Savino
,
S.
,
2010
, “
Temperature-Dependent Viscosity and Viscous Dissipation Effects in Microchannel Flows With Uniform Wall Heat Flux
,”
Heat Transfer Eng.
,
31
(
8
), pp.
682
691
.10.1080/01457630903466670
15.
Nonino
,
C.
,
Del Giudice
,
S.
, and
Comini
,
G.
,
1988
, “
Laminar Forced Convection in Three-Dimensional Duct Flows
,”
Numer. Heat Transfer
,
13
, pp.
451
466
.10.1080/10407798808551397
16.
Del Giudice
,
S.
,
Savino
,
S.
, and
Nonino
,
C.
,
2010
,
Forced Convection in Laminar Duct Flows of Liquids With Temperature Dependent Properties: A Simplified Approach, in Proceedings of 28th UIT Heat Transfer Congress
, UIT, pp.
231
236
.
17.
Shannon
,
R. L.
, and
Depew
,
C. A.
,
1969
, “
Forced Laminar Flow Convection in a Horizontal Tube With Variable Viscosity and Free Convection Effects
,”
ASME J. Heat Transfer
,
91
, pp.
251
258
.10.1115/1.3580137
18.
Joshi
,
S. D.
, and
Bergles
,
A. E.
,
1980
, “
Analytical Study of Heat Transfer to Laminar In-Tube Flow of Non-Newtonian Fluids
,”
AIChE Symp. Ser.
,
76
(
199
), pp.
270
281
.
19.
Lin
,
C. R.
, and
Chen
,
C. K.
,
1994
, “
Effect of Temperature Dependent Viscosity on the Flow and Heat Transfer over an Accelerating Surface
,”
J. Phys. D: Appl. Phys.
,
27
, pp.
29
36
.10.1088/0022-3727/27/1/005
20.
Costa
,
A.
, and
Macedonio
,
G.
,
2002
, “
Nonlinear Phenomena in Fluids With Temperature-Dependent Viscosity: An Hysteresis Model for Magma Flow in Conduits
,”
Geophys. Res. Lett.
,
29
(
10
), pp.
40-1
40-4
.10.1029/2001GL014493
21.
Costa
,
A.
, and
Macedonio
,
G.
,
2003
, “
Viscous Heating for Fluids With Temperature Dependent Viscosity: Implications for Magma Flows
,”
Nonlinear Process. Geophys.
,
10
, pp.
545
555
.10.5194/npg-10-545-2003
22.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
, pp.
1787
1806
.10.1016/0017-9310(72)90054-3
23.
Hirsh
,
C.
,
1988
,
Numerical Computation of Internal and External Flows
, Vol.
1
,
Wiley
,
New York
, p.
70
.
24.
Javeri
,
V.
,
1977
, “
Heat Transfer in Laminar Entrance Region of a Flat Channel for the Temperature Boundary Condition of the Third Kind
,”
Wärme- und Stoffübertragung
,
10
, pp.
137
144
.10.1007/BF01682707
25.
Nonino
,
C.
,
Del Giudice
,
S.
, and
Savino
,
S.
,
2006
, “
Temperature Dependent Viscosity Effects on Laminar Forced Convection in the Entrance Region of Straight Ducts
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4469
4481
.10.1016/j.ijheatmasstransfer.2006.05.021
26.
Del Giudice
,
S.
,
Savino
,
S.
, and
Nonino
,
C.
,
2011
, “
Entrance and Temperature Dependent Viscosity Effects on Laminar Forced Convection in Straight Ducts With Uniform Wall Heat Flux
,”
ASME J. Heat Transfer
,
133
, p.
101702
.10.1115/1.4004171
27.
Nonino
,
C.
,
2003
, “
A Simple Pressure Stabilization for a SIMPLE-Like Equal-Order FEM Algorithm
,”
Numer. Heat Transfer, Part B
,
44
, pp.
61
81
.10.1080/713836335
You do not currently have access to this content.