Condensation on a cubic seed particle was simulated by classical molecular dynamics (MD). Seed size and supersaturation ratio of the system were the factors that were examined in order to observe the effects of the dimension of seeds and thermodynamic conditions. Two stages of nucleation were observed in the phenomenon, where the first stage is from the seed growth and the second from homogeneous nucleation. Therefore, the nucleation rate and growth rate were each calculated by the Yasuoka–Matsumoto (YM) method. As the seed size increased, the growth rate decreased, but there was no clear seed influence on the homogeneous nucleation characteristics. Besides, the classical nucleation theory (CNT), cluster formation free energy and kinetic analysis were conducted. The free energy in the exponential term of the classical nucleation theory and that obtained from the cluster formation free energy showed different characteristics.

References

References
1.
Phillips
,
V. T. J.
,
Donner
,
L. J.
, and
Garner
,
S. T.
,
2007
, “
Nucleation Processes in Deep Convection Simulated by a Cloud-System-Resolving Model With Double-Moment Bulk Microphysics
,”
J. Atmos. Sci.
,
64
(
3
), pp.
738
761
.10.1175/JAS3869.1
2.
Warren
,
D. R.
, and
Seinfeld
,
J. H.
,
1984
, “
Nucleation and Growth of Aerosol From a Continuously Reinforced Vapor
,”
Aerosol Sci. Technol.
,
3
(
2
), pp.
135
153
.10.1080/02786828408959003
3.
Altman
, I
. S.
,
Agranovski
, I
. E.
, and
Choi
,
M.
,
2004
, “
Nanoparticle Generation: The Concept of a Stagnation Size Region for Condensation Growth
,”
Phys. Rev. E
,
70
(
6
), p.
062603
10.1103/PhysRevE.70.062603
4.
Fletcher
,
N. H.
,
1958
, “
Size Effect in Heterogeneous Nucleation
,”
J. Chem. Phys.
,
29
(
3
), pp.
572
576
.10.1063/1.1744540
5.
Kuni
,
F. M.
,
Shchekin
,
A. K.
,
Rusanov
,
A. I.
, and
Widom
,
B.
,
1996
, “
Role of Surface Forces in Heterogeneous Nucleation on Wettable Nuclei
,”
Adv. Colloid Interface Sci.
,
65
, pp.
71
124
.10.1016/0001-8686(96)00290-4
6.
Liu
,
X. Y.
,
1999
, “
A New Kinetic Model for Three-Dimensional Heterogeneous Nucleation
,”
J. Chem. Phys.
,
111
(
4
), pp.
1628
1635
.10.1063/1.479391
7.
Sadus
,
R. J.
,
2002
,
Molecular Simulation of Fluids
,
Elsevier Science
,
Amsterdam, The Netherlands
.
8.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1989
,
Computer Simulation of Liquids
,
Oxford University Press
,
Oxford, UK
.
9.
Toxvaerd
,
S.
,
2001
, “
Molecular-Dynamics Simulation of Homogeneous Nucleation in the Vapor Phase
,”
J. Chem. Phys.
,
115
(
19
), pp.
8913
8920
.10.1063/1.1412608
10.
Matsubara
,
H.
,
Koishi
,
T.
,
Ebisuzaki
,
T.
, and
Yasuoka
,
K.
,
2007
, “
Extended Study of Molecular Dynamics Simulation of Homogeneous Vapor-Liquid Nucleation of Water
,”
J. Chem. Phys.
,
127
(
21
), p.
214507
.10.1063/1.2803899
11.
Yasuoka
,
K.
, and
Matsumoto
,
M.
,
1998
, “
Molecular Dynamics of Homogeneous Nucleation in the Vapor Phase. I. Lennard-Jones Fluid
,”
J. Chem. Phys.
,
109
(
19
), pp.
8451
8462
.10.1063/1.477509
12.
Wedekind
,
J.
,
Wolk
,
J.
,
Reguera
,
D.
, and
Strey
,
R.
,
2007
, “
Nucleation Rate Isotherms of Argon From Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
127
(
15
), p.
154515
.10.1063/1.2784122
13.
Yasuoka
,
K.
,
Gao
,
G. T.
, and
Zeng
,
X. C.
,
2000
, “
Molecular Dynamics Simulation of Supersaturated Vapor Nucleation in Slit Pore
,”
J. Chem. Phys.
,
112
(
9
), pp.
4279
4285
.10.1063/1.480973
14.
Toxvaerd
,
S.
,
2002
, “
Heterogeneous Nucleation at a Planar Surface
,”
Physica A
,
314
(
1-4
), pp.
442
447
.10.1016/S0378-4371(02)01142-1
15.
Matsubara
,
H.
,
Ebisuzaki
,
T.
, and
Yasuoka
,
K.
,
2009
, “
Microscopic Insights Into Nucleation in a Sulfuric Acid-Water Vapor Mixture Based on Molecular Dynamics Simulation
,”
J. Chem. Phys.
,
130
(
10
), p.
104705
.10.1063/1.3082079
16.
Darvas
,
M.
,
Picaud
,
S.
, and
Pal
,
J.
,
2011
, “
Water Adsorption Around Oxalic Acid Aggregates: A Molecular Dynamics Simulation of Water Nucleation on Organic Aerosols
,”
Phys. Chem. Chem. Phys.
,
13
(
44
), pp.
19830
19839
.10.1039/c1cp21901d
17.
Inci
,
L.
, and
Bowles
,
R. K.
,
2011
, “
Heterogeneous Condensation of the Lennard-Jones Vapor onto a Nanoscale Seed Particle
,”
J. Chem. Phys.
,
134
(
11
), p.
114505
.10.1063/1.3565479
18.
Suh
,
D.
, and
Yasuoka
,
K.
,
2011
, “
Nanoparticle Growth Analysis by Molecular Dynamics: Spherical Seed
,”
J. Phys. Chem. B
,
115
(
36
), pp.
10631
10645
.10.1021/jp201964h
19.
Kashchiev
,
D.
,
2000
,
Nucleation: Basic Theory With Applications
,
Butterworth-Heinemann
,
Burlington, MA
.
20.
Yasuoka
,
K.
, and
Matsumoto
,
M.
,
1998
, “
Molecular Dynamics of Homogeneous Nucleation in the Vapor Phase. II. Water
,”
J. Chem. Phys.
,
109
(
19
), pp.
8463
8470
.10.1063/1.477510
21.
Suh
,
D.
, and
Yasuoka
,
K.
,
2012
, “
Nanoparticle Growth Analysis by Molecular Dynamics: Cubic Seed
,”
J. Phys. Chem. B
,
116
, pp.
14637
14649
.10.1021/jp3044658
22.
Murray
,
D. B.
, and
Saviot
,
L.
,
2005
, “
Acoustic Vibrations of Embedded Spherical Nanoparticles
,”
Physica E
,
26
(
1-4
), pp.
417
421
.10.1016/j.physe.2004.08.091
23.
Agrawal
,
P. M.
,
Rice
,
B. M.
, and
Thompson
,
D. L.
,
2002
, “
Predicting Trends in Rate Parameters for Self-Diffusion on Fcc Metal Surfaces
,”
Surf. Sci.
,
515
(
1
), pp.
21
35
.10.1016/S0039-6028(02)01916-7
24.
Holcomb
,
C. D.
,
Clancy
,
P.
,
Thompson
,
S. M.
, and
Zollweg
,
J. A.
,
1992
, “
A Critical Study of Simulations of the Lennard-Jones Liquid-Vapor Interface
,”
Fluid Phase Equilib.
,
75
(
C
), pp.
185
196
.10.1016/0378-3812(92)87016-G
25.
Mecke
,
M.
,
Winkelmann
,
J.
, and
Fischer
,
J.
,
1997
, “
Molecular Dynamics Simulation of the Liquid-Vapor Interface: The Lennard-Jones Fluid
,”
J. Chem. Phys.
,
107
(
21
), pp.
9264
9270
.10.1063/1.475217
26.
Trokhymchuk
,
A.
, and
Alejandre
,
J.
,
1999
, “
Computer Simulations of Liquid/Vapor Interface in Lennard-Jones Fluids: Some Questions and Answers
,”
J. Chem. Phys.
,
111
(
18
), pp.
8510
8523
.10.1063/1.480192
27.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2010
, Nist Chemistry Webbook, Nist Standard Reference Database Number 69,
National Institute of Standards and Technology
,
Gaithersburg MD
, 20899, http://webbook.nist.gov
28.
Stillinger
,
F. H.
, Jr.
,
1963
, “
Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium
,”
J. Chem. Phys.
,
38
(
7
), pp.
1486
1494
.10.1063/1.1776907
You do not currently have access to this content.