The present study is geared toward quantifying the effects of imposed thermal boundary condition in cooling channel applications. In this regard, tests are conducted in a generic passage, with evenly distributed rib type perturbators at 90 deg, with a 30% passage blockage ratio and pitch-to-height ratio of 10. Uniform heat-flux is imposed on the external side of the slab which provides Biot number and solid-to-fluid thermal conductivity ratio around 1 and 600, respectively. Through infrared thermometry measurements over the wetted surface and via an energy balance within the solid, conjugate heat transfer coefficients are calculated over a single rib-pitch. The local heat extraction is demonstrated to be a strong function of the conduction effects, observed more dominantly in the rib vicinity. Moreover, the aero-thermal effects are investigated by comparing the findings with analogous aerodynamic literature, enabling heat transfer distributions to be associated with distinct flow structures. Furthermore, the results are contrasted with the iso-heat-flux wetted boundary condition test case. Neglecting the thermal boundary condition dependence, and thus the true thermal history of the boundary layer, is demonstrated to produce large errors in heat transfer predictions.

References

References
1.
Kay
,
J. M.
, and
Nedderman
,
R. M.
,
1985
,
Fluid Mechanics and Transfer Processes
,
Cambridge University Press
,
Cambridge, UK
.
2.
Luikov
,
A. V.
,
1974
, “
Conjugate Convective Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
17
(
2
), pp.
257
265
.10.1016/0017-9310(74)90087-8
3.
Cole
,
K. D.
,
1997
, “
Conjugate Heat Transfer From a Small Heated Strip
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2709
2719
.10.1016/S0017-9310(96)00232-3
4.
Perelman
,
L. T.
,
1961
, “
On Conjugated Problems of Heat Transfer
,”
Int. J. Heat Mass Transfer
,
3
(
4
), pp.
293
303
.10.1016/0017-9310(61)90044-8
5.
Luikov
,
A. V.
, and
Aleksachenko
,
V. A.
,
1971
, “
Analytical Methods of Solution of Conjugated Problems in Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
14
(
8
), pp.
1047
1056
.10.1016/0017-9310(71)90203-1
6.
Pozzi
,
A.
,
Quaranta
,
G.
, and
Tognaccini
,
R.
,
2008
, “
A Self-Similar Unsteady Flow With Conjugated Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1804
1809
.10.1016/j.ijheatmasstransfer.2007.07.003
7.
Mosaad
,
M.
,
1999
, “
Laminar Forced Convection Conjugate Heat Transfer Over a Flat Plate
,”
Int. J. Heat Mass Transfer
,
35
(
5
), pp.
371
375
.10.1007/s002310050338
8.
Mori
,
S.
,
Sakakibara
,
M.
, and
Tanimoto
,
A.
,
1974
, “
Steady Heat Transfer to Laminar Flow in a Circular Tube With Conduction in the Tube Wall
,”
Heat Transfer-Jpn. Res.
,
3
(
2
), pp.
37
46
.
9.
Barozzi
,
G. S.
, and
Pagliarini
,
G.
,
1985
, “
A Method to Solve Conjugate Heat Transfer problems: the Case of Fully Developed Laminar Flow in a Pipe
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
77
83
.10.1115/1.3247406
10.
Li
,
Y.
, and
Ortega
,
A.
,
1998
, “
Forced Convection From a Rectangular Heat Source in Uniform Shear Flow: The Conjugate Peclet Number in the Thin Plate Limit
,”
Intersociety Conference on Thermal Phenomena
, May, Seattle, WA.
11.
Ortega
,
A.
, and
Ramanathan
,
S.
,
2003
, “
On the Use of Point Source Solutions for Forced Air Cooling of Electronic Components—Part II: Conjugate Forced Convection From a Discrete Rectangular Source on a Thin Conducting Plate
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
235
243
.10.1115/1.1569507
12.
Dorfman
,
A.
,
1982
,
Heat Transfer for Flow Past Non-Isothermal Bodies
,
Izd. Mashinostroenie
,
Moscow
.
13.
Dorfman
,
A.
,
1985
, “
A New Type of Boundary Condition in Convective Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
28
(
6
), pp.
1197
1203
.10.1016/0017-9310(85)90127-9
14.
Dorfman
,
A.
,
2009
,
Conjugate Problems in Convective Heat Transfer
,
Taylor & Francis
,
London
.
15.
Dorfman
,
A.
,
1971
, “
Exact Solution of Thermal Boundary Layer Equation With Arbitrary Temperature Distribution on Streamlined Surface
,”
High Temp.
,
8
(
5
), pp.
955
963
.
16.
Young
,
T. J.
, and
Vafai
,
K.
,
1998
, “
Convective Cooling of a Heated Obstacle in a Channel
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3131
3148
.10.1016/S0017-9310(97)00323-2
17.
Kanna
,
P. R.
, and
Das
,
M. K.
,
2006
, “
Conjugate Heat Transfer Study of Backward-Facing Step Flow—A Benchmark Problem
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3929
3941
.10.1016/j.ijheatmasstransfer.2006.02.058
18.
Simpson
,
R. L.
,
1983
, “
A Model for the Backflow Mean Velocity Profile
,”
AIAA J.
,
21
(
1
), pp.
142
143
.10.2514/3.8040
19.
Westphal
,
R. V.
,
Eaton
,
J. K.
, and
Johnston
,
J. P.
,
1981
, “
A New Probe for Measurement of Velocity and Wall Shear Stress in Unsteady, Reversing Flow
,”
ASME J. Fluids Eng.
,
102
(
2
), pp.
478
482
.10.1115/1.3240819
20.
Vogel
,
J. C.
, and
Eaton
,
J. K.
,
1985
, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
,
107
, pp.
922
–929.10.1115/1.3247522
21.
Zukauskas
,
V. A.
, and
Pedisius
,
K. A.
,
1987
, “
Heat Transfer to Reattached Fluid Flow Downstream of a Fence
,”
Wärme- und Stoffübertagung
,
21
(
2–3
), pp.
125
131
.10.1007/BF01377568
22.
Eaton
,
J. K.
, and
Johnston
,
J. P.
,
1981
, “
A Review of Research on Subsonic Turbulent Flow Reattachment
,”
AIAA J.
,
19
(
9
), pp.
1093
1100
.10.2514/3.60048
23.
Eaton
,
J. K.
,
Johnston
,
J. P.
, and
Jeans
,
A. H.
,
1979
, “
Measurements in Reattaching Turbulent Shear Layer
,”
Proceedings 2nd Symposium on Turbulent Shear Flows
, London.
24.
Armaly
,
B. F.
,
Durst
,
F.
, and
Pereira
,
J. C. F.
,
1983
, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
,
127
, pp.
473
496
.10.1017/S0022112083002839
25.
Adams
,
E. W.
, and
Johnston
,
J. P.
,
1988
, “
Effects of Separating Shear Layer on the Reattachment Flow Structure Part 2: Reattachment Length and Wall Shear Stress
,”
Exp. Fluids
,
6
, pp.
493
499
.
26.
Avancha
,
R. V. R.
, and
Pletcher
,
R. H.
,
2002
, “
Large Eddy Simulation of the Turbulent Flow Past a Backward-Facing Step With Heat Transfer and Property Variations
,”
Int. J. Heat Fluid Flow
,
23
, pp.
601
614
.10.1016/S0142-727X(02)00156-X
27.
Armaly
,
B. F.
,
Durst
,
F.
, and
Kottke
,
V.
,
1981
, “
Momentum, Heat, and Mass Transfer in Backward-Facing Step Flows
,”
Proceedings of 3rd Symposium on Turbulent Shear Flows
, Davis, CA.
28.
Sparrow
,
E. M.
,
Kang
,
S. S.
, and
Chuck
,
W.
,
1987
, “
Relation Between the Points of Flow Reattachment and Maximum Heat Transfer for Regions of Flow Separation
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1237
1246
.10.1016/0017-9310(87)90157-8
29.
Aung
,
W.
,
1983
, “
An Experimental Study on Laminar Heat Transfer Downstream of Backsteps
,”
ASME J. Heat Transfer
,
105
(
4
), pp.
823
829
.10.1115/1.3245668
30.
Seban
,
R. A.
,
Emery
,
A.
, and
Levy
,
A.
,
1959
, “
Heat Transfer to Separated and Reattached Subsonic Turbulent Flows Obtained Downstream of a Surface Step
,”
J. Aerosp. Sci.
,
28
, pp.
809
814
.
31.
Kanna
,
P. R.
, and
Das
,
M. K.
,
2007
, “
Conjugate Heat Transfer Study of a Two-Dimensional Laminar Incompressible Wall Jet Over a Backward-Facing Step
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
220
229
.10.1115/1.2424235
32.
Jourdain
,
C.
,
Escriva
,
X.
, and
Giovannini
,
A.
,
1997
, “
Unsteady Fow Events and Mechanisms Leading to Heat Transfer Enhancement in a Ribbed Channel
,”
Proceedings Eurotherm Seminar 55: Heat Transfer in Single Phase Flow
.
33.
Casarsa
,
L.
, and
Arts
,
T.
,
2005
, “
Experimental Investigation of the Aerothermal Performance of a High Blockage Rib-Roughened Cooling Channel
,”
ASME J. Turbomach.
,
127
(
3
), pp.
580
588
.10.1115/1.1928933
34.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
J. Mech. Eng.
,
75
, pp.
3
8
.
35.
Rabin
,
Y.
,
2003
, “
A General Model for the Propagation of Uncertainty in Measurements Into Heat Transfer Simulations and Its Application to Cryosurgery
,”
Cryobiology
,
46
, pp.
109
120
.10.1016/S0011-2240(03)00015-4
36.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York.
37.
Cukurel
,
B.
,
Selcan
,
C.
, and
Arts
,
T.
,
2012
, “
Film Cooling Extraction Effects on the Aero-thermal Characteristics of Rib Roughened Cooling Channel Flow
,” ASME GT2012-68680.
38.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Texas A&M University: 1980–2004
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.10.2514/1.15403
You do not currently have access to this content.