Steady, laminar, mixed convection in a straight and vertically oriented pipe conveying slurries of a microencapsulated phase-change material (MCPCM) suspended in distilled water (flowing upwards), with essentially uniform heat flux imposed on its outside surface, are considered. A cost-effective homogenous mathematical model is proposed and shown to be applicable to the aforementioned mixed convection phenomena with slurries of a sample MCPCM. Correlations for the effective properties of the sample MCPCM slurries and procedures for their implementation are presented. The energy equation, in which the latent-heat effects are handled using an effective specific heat, is cast in a form akin to that of a general advection-diffusion transport equation. Difficulties with the standard definition of bulk temperature when the specific heat of the fluid changes significantly with temperature are elaborated, and a modified bulk temperature that overcomes these difficulties is proposed. A finite volume method (FVM) was used to solve the mathematical model. The proposed model and FVM were validated by using them to solve problems involving slurries of the sample MCPCM, and comparing the results to those of a complementary experimental investigation. The numerical results compare very well with those of the complementary experimental investigation. They also demonstrate the need for optimizing the various parameters involved, if full benefits of the MCPCM slurries are to be achieved for specific applications.

References

References
1.
Katz
,
L.
,
1967
, “
Natural Convection Heat Transfer With Fluids Using Suspended Particles Which Undergo Phase Change
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
2.
Colvin
,
D. P.
, and
Mulligan
,
J. C.
,
1987
, “
Microencapsulated Phase-Change for Storage of Heat
,”
George C. Marshall Space Flight Center
, Alabama,
NASA Technical Brief MFS-27198
.
3.
Charunyakorn
,
P.
,
Sengupta
,
S.
, and
Roy
,
S. K.
,
1991
, “
Forced Convection Heat Transfer in Microencapsulated Phase Change Material Slurries: Flow in Circular Ducts
,”
Int. J. Heat Mass Transfer
,
34
, pp.
819
833
.10.1016/0017-9310(91)90128-2
4.
Roy
,
S. K.
, and
Sengupta
,
S.
,
1991
, “
An Evaluation of Phase Change Microcapsules for Use in Enhanced Heat Transfer Fluids
,”
Int. Commun. Heat Mass Transfer
,
18
, pp.
495
507
.10.1016/0735-1933(91)90064-B
5.
Goel
,
M.
,
Roy
,
S. K.
, and
Sengupta
,
S.
,
1994
, “
Laminar Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions
,”
Int. J. Heat Mass Transfer
,
37
, pp.
593
604
.10.1016/0017-9310(94)90131-7
6.
Choi
,
E.
,
Cho
,
Y. I.
, and
Lorsch
,
H. G.
,
1994
, “
Forced Convection Heat Transfer With Phase-Change-Material Slurries: Turbulent Flow in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
37
, pp.
207
215
.10.1016/0017-9310(94)90093-0
7.
Zhang
,
Y.
, and
Faghri
,
A.
,
1995
, “
Analysis of Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions
,”
J. Thermophys. Heat Transfer
,
9
, pp.
727
732
.10.2514/3.731
8.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2221
2225
.10.1016/S0017-9310(97)00272-X
9.
Yamagishi
,
Y.
,
Takeuchi
,
H.
,
Pyatenko
,
A. T.
, and
Kayukawa
,
N.
,
1999
, “
Characteristics of Microencapsulated PCM Slurry as a Heat-Transfer Fluid
,”
AIChE J.
,
45
, pp.
696
707
.10.1002/aic.690450405
10.
Roy
,
S. K.
, and
Avanic
,
B. L.
,
2001
, “
Turbulent Heat Transfer With Phase Change Material Suspensions
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2277
2285
.10.1016/S0017-9310(00)00260-X
11.
Hu
,
X.
, and
Zhang
,
Y.
,
2002
, “
Novel Insight and Numerical Analysis of Convective Heat Transfer Enhancement With Microencapsulated Phase Change Material Slurries: Laminar Flow in a Circular Tube With Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3163
3172
.10.1016/S0017-9310(02)00034-0
12.
Inaba
,
H.
,
Kim
,
M. J.
, and
Horibe
,
A.
,
2004
, “
Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurries With Plural Microcapsules Having Different Diameters
,”
ASME J. Heat Transfer
,
126
, pp.
558
565
.10.1115/1.1773584
13.
Hao
,
Y. L.
, and
Tao
,
Y.-X.
,
2004
, “
A Numerical Model for Phase-Change Suspension Flow in Microchannel
,”
Numer. Heat Transfer, Part A
,
46
, pp.
55
77
.10.1080/10407780490457545
14.
Xing
,
K. Q.
,
Tao
,
Y.-X.
, and
Hao
,
Y. L.
,
2005
, “
Performance Evaluation of Liquid Flow With PCM Particles in Microchannels
,”
ASME J. Heat Transfer
,
127
, pp.
931
940
.10.1115/1.1929783
15.
Alvarado
,
J. L.
,
Marsh
,
C.
,
Sohm
,
C.
,
Phetteplace
,
G.
, and
Newell
,
T.
,
2007
, “
Thermal Performance of Microencapsulated Phase Change Material Slurry in Turbulent Flow Under Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1938
1952
.10.1016/j.ijheatmasstransfer.2006.09.026
16.
Zhao
,
C. Y.
, and
Zhang
,
G. H.
,
2011
, “
Review on Microencapsulated Phase Change Materials (MEPCMs): Fabrication, Characterization and Applications
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
3813
3832
.10.1016/j.rser.2011.07.019
17.
Chen
,
Z.
, and
Fang
,
G.
,
2011
, “
Preparation and Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry: A Review
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
4624
4632
.10.1016/j.rser.2011.07.090
18.
Hallman
,
T. M.
,
1958
, “
Combined Forced and Free Convection in a Vertical Tube
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
19.
Morton
,
B. R.
,
1959
, “
Laminar Convection in Uniformly Heated Vertical Pipes
,”
J. Fluid Mech.
,
8
, pp.
227
240
.10.1017/S0022112060000566
20.
Metais
,
B.
, and
Eckert
,
E. R. G.
,
1964
, “
Forced, Mixed, and Free Convection Regimes
,”
ASME J. Heat Transfer
,
86
, pp.
295
296
.10.1115/1.3687128
21.
Lawrence
,
W. T.
, and
Chato
,
J. C.
,
1966
, “
Heat-Transfer Effects on the Developing Laminar Flow Inside Vertical Tubes
,”
ASME J. Heat Transfer
,
88
, pp.
214
222
.10.1115/1.3691518
22.
Barozzi
,
G. S.
,
Dumas
,
A.
, and
Collins
,
M. W.
,
1984
, “
Sharp Entry and Transition Effects for Laminar Combined Convection of Water in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
5
, pp.
235
241
.10.1016/0142-727X(84)90060-2
23.
Bernier
,
M. A.
, and
Baliga
,
B. R.
,
1992
, “
Visualization of Upward Mixed-Convection Flows in Vertical Pipes Using a Thin Semitransparent Gold-Film Heater and Dye Injection
,”
Int. J. Heat Fluid Flow
,
13
, pp.
241
249
.10.1016/0142-727X(92)90037-A
24.
Wang
,
M.
,
Tsuji
,
T.
, and
Nagano
,
Y.
,
1994
, “
Mixed Convection With Flow Reversal in the Thermal Entrance Region of Horizontal and Vertical Pipes
,”
Int. J. Heat Mass Transfer
,
37
, pp.
2305
2319
.10.1016/0017-9310(94)90372-7
25.
Su
,
Y. C.
, and
Chung
,
J. N.
,
2000
, “
Linear Stability Analysis of Mixed-Convection Flow in a Vertical Pipe
,”
J. Fluid Mech.
,
422
, pp.
141
166
.10.1017/S0022112000001762
26.
Behzadmehr
,
A.
,
Galanis
,
N.
, and
Laneville
,
A.
,
2003
, “
Low Reynolds Number Mixed Convection in Vertical Tubes With Uniform Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4823
4833
.10.1016/S0017-9310(03)00323-5
27.
Japikse
,
D.
,
1973
, “
Advances in Thermosyphon Technology
,”
Adv. Heat Transfer
,
9
, pp.
1
111
.10.1016/S0065-2717(08)70061-3
28.
Bernier
,
M. A.
, and
Baliga
,
B. R.
,
1992
, “
A 1-D/2-D Model and Experimental Results for a Closed-Loop Thermosyphon With Vertical Heat Transfer Sections
,”
Int. J. Heat Mass Transfer
,
35
, pp.
2969
2982
.10.1016/0017-9310(92)90317-L
29.
Runchal
,
A. K.
,
2009
, “
Brian Spalding: CFD and Reality—A Personal Recollection
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4063
4073
.10.1016/j.ijheatmasstransfer.2009.03.058
30.
Artemov
,
V.
,
Beale
,
S. B.
,
deVahl Davis
,
G.
,
Escudier
,
M. P.
,
Fueyo
,
N.
,
Launder
,
B. E.
,
Leonardi
,
E.
,
Malin
,
M. R.
,
Minkowycz
,
W. J.
,
Patankar
,
S. V.
,
Pollard
,
A.
,
Rodi
,
W.
,
Runchal
,
A.
, and
Vanka
,
S. P.
,
2009
, “
A Tribute to D.B. Spalding and his Contributions in Science and Engineering
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3884
3905
.10.1016/j.ijheatmasstransfer.2009.03.038
31.
Scott
,
D. A.
,
2006
, “
Heat Transfer in Pipes Conveying Slurries of Microencapsulated Phase-Change Materials in Water
,”
Ph.D. thesis, McGill University, Montreal, QC, Canada.
32.
Scott
,
D. A.
, and
Baliga
,
B. R.
,
2008
, “
Experimental Investigation of Laminar Mixed Convection in a Vertical Pipe With Slurries of a Microencapsulated Phase-Change Material in Distilled Water
,”
Proceedings of the 5th International Conference on Transport Phenomena in Multiphase Systems
, Bialystok, Poland, June 30–July 3, Vol. 2, pp. 189–196.
33.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
Cambridge, UK
.
34.
Scott
,
D. A.
,
Lamoureux
,
A.
, and
Baliga
,
B. R.
,
2010
, “
Computational Investigation of Laminar Mixed Convection in a Vertical Pipe With Slurries of a Microencapsulated Phase-Change Material in Distilled Water
,”
Proceedings of the International Heat Transfer Conference
, Washington, DC, Aug. 8–13,
ASME
Paper No. IHTC14-22974. 10.1115/IHTC14-22974
35.
Lamoureux
,
A.
,
2012
, “
Investigations of a Closed-Loop Thermosyphon Operating With Slurries of a Microencapsulated Phase-Change Material
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
36.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th
ed.,
John Wiley & Sons
,
New York
.
37.
Maxwell
,
J. C.
,
1954
,
A Treatise on Electricity and Magnetism
,
3rd
ed.,
Dover
,
New York
.
38.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1982
,
Transport Phenomena
,
2nd
ed.,
John Wiley & Sons
,
New York
.
39.
Crowe
,
C. T.
,
2006
,
Multiphase Flow Handbook
,
Taylor & Francis
,
Boca Raton, FL
.
40.
Inaba
,
H.
,
2000
, “
New Challenge in Advanced Thermal Energy Transportation Using Functionally Thermal Fluids
,”
Int. J. Therm. Sci.
,
39
, pp.
991
1003
.10.1016/S1290-0729(00)01191-1
41.
Cox
,
R. G.
, and
Mason
,
S. G.
,
1971
, “
Suspended Particles in Fluid Flow Through Tubes
,”
Annu. Rev. Fluid Mech.
,
4
, pp.
291
316
.10.1146/annurev.fl.03.010171.001451
42.
Elkouh
,
N.
, and
Baliga
,
B. R.
,
1995
, “
Effect of Variable Properties on Natural Convection in Water Near Its Density Inversion Temperature
,”
Proceedings of the 30th National Heat Transfer Conference
, Portland, OR, Aug. 6–8, HTD, Vol. 33, pp. 53–63.
43.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corp.
,
Washington, DC
.
44.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in fortran
,
2nd
ed.,
Cambridge University Press
,
UK
, pp.
678
683
.
45.
Runchal
,
A. K.
,
1972
, “
Convergence and Accuracy of Three Finite Difference Schemes for a Two-Dimensional Conduction and Convection Problem
,”
Int. J. Numer. Methods Eng.
,
4
, pp.
541
550
.10.1002/nme.1620040408
46.
Baliga
,
B. R.
, and
Atabaki
,
N.
,
2006
, “
Control-Volume-Based Finite Difference and Finite Element Methods
,”
Handbook of Numerical Heat Transfer
,
2nd
ed.,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
John Wiley & Sons
,
New York
, Chap. 6.
47.
Spalding
,
D. B.
,
1972
, “
A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives
,”
Int. J. Numer. Methods Eng.
,
4
, pp.
551
559
.10.1002/nme.1620040409
48.
Leonard
,
B. P.
,
1997
, “
Bounded Higher-Order Upwind Multidimensional Finite-Volume Convection-Diffusion Algorithms
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor & Francis
,
New York
, Vol.
1
, Chap. 1, pp.
1
57
.
49.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
, pp.
1525
1532
.10.2514/3.8284
50.
Saabas
,
H. J.
, and
Baliga
,
B. R.
,
1994
, “
A Co-Located Equal-Order Control-Volume Finite Element Method for Multidimensional, Incompressible Fluid Flow—Part I: Formulation
,”
Numer. Heat Transfer, Part B
,
26
, pp.
381
407
.10.1080/10407799408914936
51.
Richardson
,
L. F.
,
1910
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations With Application to a Masonry Dam
,”
Trans. R. Soc. London, Ser. A
,
210
, pp.
307
357
.10.1098/rsta.1911.0009
52.
Rao
,
S. S.
,
1996
,
Engineering Optimization: Theory and Practice
,
3rd
ed.,
John Wiley & Sons
,
New York
.
53.
Jaluria
,
Y.
,
1998
,
Design and Optimization of Thermal Systems
,
McGraw-Hill
,
New York
.
54.
Duplain
,
E.
, and
Baliga
,
B. R.
,
2009
, “
Computational Optimization of the Thermal Performance of Internally Finned Ducts
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3929
3942
.10.1016/j.ijheatmasstransfer.2009.03.030
You do not currently have access to this content.