Optimization under uncertainty (OUU) is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, yields output uncertainties that help the designer choose appropriate values for input parameters to produce safe designs. Apart from providing basic statistical information, such as mean and standard deviation in the output quantities, uncertainty-based optimization produces auxiliary information, such as local and global sensitivities. The designer may thus decide the input parameter(s) to which the output quantity of interest is most sensitive, and thereby design better experiments based on just the most sensitive input parameter(s). Another critical output of such a methodology is the solution to the inverse problem, i.e., finding the allowable uncertainty (range) in the input parameter(s), given an acceptable uncertainty (range) in the output quantities of interest. We apply optimization under uncertainty to the problem of heat transfer in fin heat sinks with uncertainties in geometry and operating conditions. The analysis methodology is implemented using DAKOTA, an open-source design and analysis kit. A response surface is first generated which captures the dependence of the quantity of interest on inputs. This response surface is then used to perform both deterministic and probabilistic optimization of the heat sink, and the results of the two approaches are compared.

References

References
1.
Eldred
,
M. S.
,
2009
, “
Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design
,”
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Palm Springs, CA
, May 4–7,
American Institute of Aeronautics and Astronautics Inc.
2.
Eldred
,
M. S.
,
Giunta
,
A. A.
,
Wojtkiewicz
,
S. F.
, Jr.
, and
Trucano
,
T. G.
,
2002
, “
Formulations for Surrogate-Based Optimization Under Uncertainty
,”
Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Buckhead
,
Atlanta, GA
, Sept.
4
6
.
3.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2009
, “
Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4317
4326
.10.1016/j.ijheatmasstransfer.2009.03.069
4.
Kitajo
,
S.
,
Takeda
,
Y.
,
Kurokawa
,
Y.
,
Ohta
,
T.
, and
Mizunashi
,
H.
,
1992
, “
Development of a High Performance Air Cooled Heat Sink for Multi-Chip Modules
,” 8th Annual
IEEE
Semiconductor Thermal Measurement and Management Symposium,
New York, NY
, Feb. 3–5, pp.
119
124
.10.1109/STHERM.1992.172849
5.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New Jersey
.
6.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
116
123
.10.1115/1.3246622
7.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
John Wiley & Sons
,
New York
.
8.
Nakayama
,
W.
,
Matsushima
,
H.
, and
Goel
,
P.
,
1988
, “
Forced Convective Heat Transfer From Arrays of Finned Packages
,”
Cooling Technology for Electronic Equipment
,
Hemisphere
,
Washington, DC
, pp.
195
210
.
9.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transfer
,
35
(
12
), pp.
3259
3264
.10.1016/0017-9310(92)90213-C
10.
Ledezma
,
G.
,
Morega
,
A. M.
, and
Bejan
,
A.
,
1996
, “
Optimal Spacing Between Pin Fins With Impinging Flow
,”
ASME J. Heat Transfer
,
118
, pp.
570
577
.10.1115/1.2822670
11.
Kang
,
H. S.
,
2010
, “
Optimization of a Pin Fin With Variable Base Thickness
,”
ASME J. Heat Transfer
,
132
(
3
), p.
034501
.10.1115/1.4000048
12.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2005
, “
Optimization of Pin-Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
247
254
.10.1109/TCAPT.2005.848507
13.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
35
52
.10.1146/annurev.fluid.010908.165248
14.
Le Maitre
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
,
2001
, “
A Stochastic Projection Method for Fluid Flow
,”
J. Comput. Phys.
,
173
(
2
), pp.
481
511
.10.1006/jcph.2001.6889
15.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
16.
Sobol’
,
I. M.
, and
Kucherenko
,
S.
,
2009
, “
Derivative Based Global Sensitivity Measures and Their Link With Global Sensitivity Indices
,”
Math. Comput. Simul.
,
79
(
10
), pp.
3009
3017
.10.1016/j.matcom.2009.01.023
17.
Eldred
,
M. S.
,
Giunta
,
A. A.
,
van Bloemen Waanders
,
B. G.
,
Wojtkiewicz
,
S. F.
,
Hart
,
W. E.
, and
Alleva
,
M. P.
,
2007
,
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 4.1 Reference Manual
,
Sandia National Laboratories
,
Albuquerque, NM
.
18.
Vanderplaats
,
G. N.
,
1973
,
CONMIN, a FORTRAN Program for Constrained Function Minimization: User's Manual
,
Ames Research Center and US Army Air Mobility R&D Laboratory
,
Moffett Field, CA
.
19.
Morega
,
A. M.
,
Bejan
,
A.
, and
Lee
,
S. W.
,
1995
, “
Free Stream Cooling of a Stack of Parallel Plates
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
519
531
.10.1016/0017-9310(94)00123-D
20.
Matsushima
,
H.
,
Yanagida
,
T.
, and
Kondo
,
Y.
,
1992
, “
Algorithm for Predicting the Thermal Resistance of Finned LSI Packages Mounted on a Circuit Board
,”
Heat Transfer–Jpn. Res.
,
21
(
5
), pp.
504
517
.
21.
User's Guide for fluent 6.0
,
2002
,
Fluent Inc.
,
Lebanon, NH
.
22.
CUBIT 10.0 User's Manual
,
2005
,
Sandia National Laboratories
,
Albuquerque, NM
.
23.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A
,
58
(
7
), pp.
527
544
.10.1080/10407782.2010.511987
24.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
25.
Ganapathy
,
D.
, and
Warner
,
E. J.
,
2008
, “
Defining Thermal Design Power Based on Real-World Usage Models
,”
2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
),
Orlando, FL
, May 28–31,
IEEE
, pp.
1242
1246
.10.1109/ITHERM.2008.4544402
You do not currently have access to this content.