A hybrid approach consisting of a Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein–Uhlenbeck noise perturbing the translational and rotational equations of motion of a nanoparticle is employed to study the thermal motion of a nearly neutrally buoyant nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian–Eulerian based finite element method is employed for the simulation of the hybrid approach. The instantaneous flow around the particle and the particle motion are fully resolved. The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c) the translational and rotational mean square displacements of the particle obey Stokes–Einstein and Stokes–Einstein–Debye relations, respectively; and (d) the parallel and perpendicular diffusivities of the particle closer to the wall are consistent with the analytical results, where available. The study has important implications for designing nanocarriers for targeted drug delivery. A major advantage of our novel hybrid approach employed in this paper as compared to either the fluctuating hydrodynamics approach or the generalized Langevin approach by itself is that only the hybrid method has been shown to simultaneously preserve both hydrodynamic correlations and equilibrium statistics in the incompressible limit.

References

References
1.
Liu
,
J.
,
Weller
,
G. E. R.
,
Zern
,
B.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
,
Muzykantov
,
V. R.
, and
Radhakrishnan
,
R.
,
2010
, “
A Computational Model for Nanocarrier Binding to Endothelium Validated Using In Vivo, In Vitro, and Atomic Force Microscopy Experiments
,”
Proc. Ntnl Acad. Sci. U.S.A
,
107
, pp.
16530
16535
.10.1073/pnas.1006611107
2.
Liu
,
J.
,
Agrawal
,
N.
,
Calderon
,
A.
,
Ayyaswamy
,
P.
,
Eckmann
,
D.
, and
Radhakrishnan
,
R.
,
2011
, “
Multivalent Binding of Nanocarrier to Endothelial Cells Under Shear Flow
,”
Biophys. J.
,
101
(
2
), pp.
319
326
.10.1016/j.bpj.2011.05.063
3.
Liu
,
J.
,
Bradley
,
R.
,
Eckmann
,
D.
,
Ayyaswamy
,
P.
, and
Radhakrishnan
,
R.
,
2011
, “
Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery
,”
Curr. Nanosci.
,
7
(
5
), pp.
727
735
.10.2174/157341311797483826
4.
Swaminathan
,
T.
,
Liu
,
J.
,
Uma
,
B.
,
Ayyaswamy
,
P.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D.
,
2011
, “
Dynamic Factors Controlling Carrier Anchoring on Vascular Cells
,”
IUBMB Life
,
63
(
8
), pp.
640
647
.10.1002/iub.475
5.
Liu
,
J.
,
Agrawal
,
N.
,
Eckmann
,
D.
,
Ayyaswamy
,
P.
, and
Radhakrishnan
,
R.
,
2012
, “
Top-Down Mesoscale Models and Free Energy Calculations of Multivalent Protein-Protein and Protein-Membrane Interactions
in Nanocarrier Adhesion and Receptor Trafficking,”
Innovations in Biomolecular Modeling and Simulations
,
T.
Schlick
, ed.,
Royal Society of Chemistry
, pp. 272–287.10.1039/9781849735049-00272
6.
Muzykantov
,
V.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D.
,
2012
, “
Dynamic Factors Controlling Targeting Nanocarriers to Vascular Endothelium
,”
Curr. Drug Metab.
,
113
, pp.
70
81
.10.2174/138920012798356916
7.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
, and
Radhakrishnan
,
R.
,
2011
, “
Generalized Langevin Dynamics of a Nanoparticle Using a Finite Element Approach: Thermostating With Correlated Noise
,”
J. Chem. Phys.
,
135
, p.
114104
.10.1063/1.3635776
8.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2011
, “
Nanoparticle Brownian Motion and Hydrodynamic Interactions in the Presence of Flow Fields
,”
Phys. Fluids
,
23
, p.
073602
.10.1063/1.3611026
9.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Pergamon Press
,
London
.
10.
Hauge
,
E. H.
, and
Martin-Löf
,
A.
,
1973
, “
Fluctuating Hydrodynamics and Brownian Motion
,”
J. Stat. Phys.
,
7
(
3
), pp.
259
281
.10.1007/BF01030307
11.
Serrano
,
M.
, and
Español
,
P.
,
2001
, “
Thermodynamically Consistent Mesoscopic Fluid Particle Model
,”
Phys. Rev. E
,
64
(
4
), p.
046115
.10.1103/PhysRevE.64.046115
12.
Sharma
,
N.
, and
Patankar
,
N. A.
,
2004
, “
Direct Numerical Simulation of the Brownian Motion of Particles by Using Fluctuating Hydrodynamic Equations
,”
J. Comput. Phys.
,
201
(
2
), pp.
466
486
.10.1016/j.jcp.2004.06.002
13.
Serrano
,
M.
,
Gianni
,
D.
,
Español
,
P.
,
Flekkøy
,
E.
, and
Coveney
,
P.
,
2002
, “
Mesoscopic Dynamics of Voronoi Fluid Particles
,”
J. Phys. A
,
35
(
7
), pp.
1605
1625
.10.1088/0305-4470/35/7/310
14.
Donev
,
A.
,
Vanden-Eijnden
,
E.
,
Garcia
,
A. L.
, and
Bell
,
J. B.
,
2010
, “
On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
2
), pp.
149
197
.10.2140/camcos.2010.5.149
15.
Ladd
,
A. J. C.
,
1993
, “
Short-Time Motion of Colloidal Particles: Numerical Simulation via a Fluctuating Lattice-Boltzmann Equation
,”
Phys. Rev. Lett.
,
70
(
9
), pp.
1339
1342
.10.1103/PhysRevLett.70.1339
16.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation
,”
J. Fluid Mech.
,
271
, pp.
285
309
.10.1017/S0022112094001771
17.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results
,”
J. Fluid Mech.
,
271
, pp.
311
339
.10.1017/S0022112094001783
18.
Patankar
,
N. A.
,
2002
, “
Direct Numerical Simulation of Moving Charged, Flexible Bodies With Thermal Fluctuations
,”
Technical Proceedings of the 2002 International Conference on Computational Nanoscience and Nanotechnology
,
Nano Science and Technology Institute
, Vol. 2, pp.
93
96
.
19.
Adhikari
,
R.
,
Stratford
,
K.
,
Cates
,
M. E.
, and
Wagner
,
A. J.
,
2005
, “
Fluctuating Lattice–Boltzmann
,”
EPL
,
71
(
3
), pp.
473
479
.10.1209/epl/i2004-10542-5
20.
Dünweg
,
B.
, and
Ladd
,
A. J. C.
,
2008
, “
Lattice Boltzmann Simulations of Soft Matter Systems
,”
Adv. Polym. Sci.
,
221
, pp.
89
166
.10.1007/978-3-540-87706-6_2
21.
Nie
,
D.
, and
Lin
,
J.
,
2009
, “
A Fluctuating Lattice-Boltzmann Model for Direct Numerical Simulation of Particle Brownian Motion
,”
Particuology
,
7
(
6
), pp.
501
506
.10.1016/j.partic.2009.06.012
22.
Español
,
P.
, and
Zúñiga
,
I.
,
2009
, “
On the Definition of Discrete Hydrodynamic Variables
,”
J. Chem. Phys.
,
131
, p.
164106
.10.1063/1.3247586
23.
Español
,
P.
,
Anero
,
J.
, and
Zúñiga
,
I.
,
2009
, “
Microscopic Derivation of Discrete Hydrodynamics
,”
J. Chem. Phys.
,
131
, p.
244117
.10.1063/1.3274222
24.
Atzberger
,
P. J.
,
Kramer
,
P. R.
, and
Peskin
,
C. S.
,
2007
, “
A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales
,”
J. Comput. Phys.
,
224
(
2
), pp.
1255
1292
.10.1016/j.jcp.2006.11.015
25.
Ermak
,
D. L.
, and
McCammon
,
J. A.
,
1978
, “
Brownian Dynamics With Hydrodynamic Interactions
,”
J. Chem. Phys.
,
69
(
4
), pp.
1352
1360
.10.1063/1.436761
26.
Brady
,
J. F.
, and
Bossis
,
G.
,
1988
, “
Stokesian Dynamics
,”
Annu. Rev. Fluid Mech.
,
20
(
1
), pp.
111
157
.10.1146/annurev.fl.20.010188.000551
27.
Foss
,
D. R.
, and
Brady
,
J. F.
,
2000
, “
Structure, Diffusion and Rheology of Brownian Suspensions by Stokesian Dynamics Simulation
,”
J. Fluid Mech.
,
407
, pp.
167
200
.10.1017/S0022112099007557
28.
Banchio
,
A. J.
, and
Brady
,
J. F.
,
2003
, “
Accelerated Stokesian Dynamics: Brownian Motion
,”
J. Chem. Phys.
,
118
(
22
), pp.
10323
10332
.10.1063/1.1571819
29.
Iwashita
,
T.
,
Nakayama
,
Y.
, and
Yamamoto
,
R.
,
2008
, “
A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids
,”
J. Phys. Soc. Jpn.
,
77
(
7
), p.
074007
.10.1143/JPSJ.77.074007
30.
Iwashita
,
T.
, and
Yamamoto
,
R.
,
2009
, “
Short-Time Motion of Brownian Particles in a Shear Flow
,”
Phys. Rev. E
,
79
(
3
), p.
031401
.10.1103/PhysRevE.79.031401
31.
Kubo
,
R.
,
1966
, “
The Fluctuation-Dissipation Theorem
,”
Rep. Prog. Phys.
,
29
(
1
), pp.
255
284
.10.1088/0034-4885/29/1/306
32.
Kubo
,
R.
,
Toda
,
M.
, and
Hashitsume
,
N.
,
1991
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
,
2nd ed.
, Vol. 31,
Springer-Verlag
,
Berlin
.
33.
Uma
,
B.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2012
, “
A Hybrid Formalism Combining Fluctuating Hydrodynamics and Generalized Langevin Dynamics for the Simulation of Nanoparticle Thermal Motion in an Incompressible Fluid Medium
,”
Mol. Phys.
, 110(11-12), pp. 1057–1067.10.1080/00268976.2012.663510
34.
Radhakrishnan
,
R.
,
Uma
,
B.
,
Liu
,
J.
,
Ayyaswamy
,
P.
, and
Eckmann
,
D.
,
2012
, “
Temporal Multiscale Approach for Nanocarrier Motion With Simultaneous Adhesion and Hydrodynamic Interactions in Targeted Drug Delivery
,”
J. Comput. Phys.: Special Issue on Multiscale Modeling and Simulation of Biological Systems (in press)
.
35.
Grmela
,
M.
, and
Öttinger
,
H.
,
1997
, “
Dynamics and Thermodynamics of Complex Fluids. I. Development of a General Formalism
,”
Phys. Rev. E
,
56
(
6
), pp.
6620
6632
.10.1103/PhysRevE.56.6620
36.
Öttinger
,
H.
, and
Grmela
,
M.
,
1997
, “
Dynamics and Thermodynamics of Complex Fluids. II. Illustrations of a General Formalism
,”
Phys. Rev. E
,
56
(
6
), pp.
6633
6655
.10.1103/PhysRevE.56.6633
37.
Patankar
,
N. A.
,
Singh
,
P.
,
Joseph
,
D. D.
,
Glowinski
,
R.
, and
Pan
,
T. W.
,
2000
, “
A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
26
, pp.
1509
1524
.10.1016/S0301-9322(99)00100-7
38.
Chen
,
Y.
,
Sharma
,
N.
, and
Patankar
,
N.
,
2006
, “
Fluctuating Immersed Material (FIMAT) Dynamics for the Direct Numerical Simulation of the Brownian Motion of Particles
,”
Proceedings of the IUTAM Symposium on Computational Multiphase Flow
,
S.
Balachandar
and
A.
Prosperetti
, eds.,
Springer-Verlag
, pp.
119
129
.
39.
Hu
,
H.
,
1996
, “
Direct Simulation of Flows of Solid-Liquid Mixtures
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
335
352
.10.1016/0301-9322(95)00068-2
40.
Hu
,
H. H.
,
Patankar
,
N. A.
, and
Zhu
,
M. Y.
,
2001
, “
Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Langrangian-Eulerian Technique
,”
J. Comput. Phys.
,
169
(
2
), pp.
427
462
.10.1006/jcph.2000.6592
41.
Zwanzig
,
R.
, and
Bixon
,
M.
,
1970
, “
Hydrodynamic Theory of the Velocity Correlation Function
,”
Phys. Rev. A
,
2
(
5
), pp.
2005
2012
.10.1103/PhysRevA.2.2005
42.
Keizer
,
J.
,
1987
,
Statistical Thermodynamics of Nonequilibrium Processes
,
Springer-Verlag
,
Berlin
.
43.
Zwanzig
,
R.
,
2001
,
Nonequilibrium Statistical Mechanics
,
Oxford University Press
,
New York
.
44.
Heyes
,
D. M.
,
Nuevo
,
M. J.
,
Morales
,
J. J.
, and
Branka
,
A. C.
,
1998
, “
Translational and Rotational Diffusion of Model Nanocolloidal Dispersions Studied by Molecular Dynamics Simulations
,”
J. Phys.: Condens. Matter
,
10
(
45
), pp.
10159
10178
.10.1088/0953-8984/10/45/005
45.
Happel
,
J.
, and
Brenner
,
H.
,
1983
,
Low Reynolds Number Hydrodynamics
,
Martinus Nijhoff Publishers
,
The Hague, The Netherlands
.
46.
Mavrovouniotis
,
G.
, and
Brenner
,
H.
,
1988
, “
Hindered Sedimentation, Diffusion, and Dispersion Coefficients for Brownian Spheres in Circular Cylindrical Pores
,”
J. Colloid Interface Sci.
,
124
(
1
), pp.
269
283
.10.1016/0021-9797(88)90348-7
47.
Brenner
,
H.
, and
Gaydos
,
L.
,
1977
, “
The Constrained Brownian Movement of Spherical Particles in Cylindrical Pores of Comparable Radius: Models of the Diffusive and Convective Transport of Solute Molecules in Membranes and Porous Media
,”
J. Colloid Interface Sci.
,
58
(
2
), pp.
312
356
.10.1016/0021-9797(77)90147-3
You do not currently have access to this content.