Large eddy simulations of film cooling from a discrete hole inclined 35 deg and fed by a plenum chamber are performed at a density ratio of 2 and blowing ratios from 0.5 to 2.0. Cylindrical holes at a length to diameter ratio of 1.75 and 3.5 are simulated issuing into a crossflow at a Reynolds number of approximately 16,000 based on freestream velocity and hole diameter. In addition to the baseline case of vertical inflow into the plenum, flow orientation into the plenum chamber parallel to and perpendicular to the mainstream flow are investigated. The predicted results are validated with reported measurements of the flow field and surface adiabatic effectiveness. Results show that the longer delivery tubes (L/D = 3.5) have higher cooling effectiveness except in the very near field of the coolant hole. The flow orientation in the plenum is demonstrated to have a significant effect on cooling effectiveness and on flow behavior in the delivery tube and downstream of the hole. The perpendicular plenum inflow exhibits the lowest cooling effectiveness, the lowest discharge coefficients, asymmetric jetting behavior, swirl, and a low-velocity core at the exit of the delivery tube. The parallel plenum flow orientation is shown to exhibit the highest cooling effectiveness and discharge coefficients.

References

References
1.
Bunker
,
R. S.
,
2005
,
“A Review of Shaped Hole Turbine Film-Cooling Technology,”
ASME J. Heat Transfer
,
127
, pp.
441
453
.10.1115/1.1860562
2.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
,
“Impact of Film-Cooling Jets on Turbine Aerodynamic Losses,”
ASME J. Turbomach.
,
122
, pp.
537
545
.10.1115/1.1303818
3.
Acharya
,
S.
,
Hoda
,
A.
, and
Tyagi
,
M.
,
2001
,
“Flow and Heat Transfer Predictions of Film Cooling,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
4.
Acharya
,
S.
,
2009
, “
Film Cooling Simulation and Control
,” International Symposium of Heat Transfer in Gas Turbine Systems, Turbine 2009 Conference, Antalya, Turkey.
5.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
, pp.
734
742
.10.1115/1.1625397
6.
Iourokina
,
I. V.
, and
Lele
,
S. K.
,
2005
, “
Towards Large Eddy Simulation of Film-Cooling Flows on a Model Turbine Blade Leading Edge
,” 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper No. 2005-0670.
7.
Iourokina
,
I. V.
, and
Lele
,
S. K.
,
2006
, “
Large Eddy Simulation of Film-Cooling Above the Flat Surface With a Large Plenum and Short Exit Holes
,” 44th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper No. 2006-1102.
8.
Iourokina
,
I. V.
, and
Lele
,
S. K.
,
2006
, “
Large Eddy Simulation of Film Cooling Flow Above a Flat Plate From Inclined Cylindrical Holes
,”
ASME
Joint U.S.-European Fluids Engineering Summer Meeting, Miami, FL, ASME Paper No. FEDSM2006-98282.10.1115/FEDSM2006-98282
9.
Peet
,
Y. V.
, and
Lele
,
S. K.
,
2008
, “
Near Field of Film Cooling Jet Issued Into a Flat Plate Boundary Layer: LES Study
,”
ASME
Turbo Expo 2008, Berlin, ASME Paper No. GT2008-50420.10.1115/GT2008-50420
10.
Guo
,
X.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2006
,
“Large-Eddy Simulations of Film Cooling Flows,”
Comput. Fluids
,
35
, pp.
587
606
.10.1016/j.compfluid.2005.02.007
11.
Renze
,
P.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2007
, “
Hole Shape Comparison for Film Cooling Flows Using Large-Eddy Simulations
,” AIAA Paper No. 2007-927.
12.
Renze
,
P.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2008
,
“Large-Eddy Simulation of Film Cooling Flows at Density Gradients,”
Int. J. Heat Fluid Flow
,
29
, pp.
18
34
.10.1016/j.ijheatfluidflow.2007.07.010
13.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
,
“Large-Eddy Simulation of Film Cooling Flows With Variable Density Jets,”
Flow, Turbul. Combust.
,
80
(
1
), pp.
119
132
.10.1007/s10494-007-9080-8
14.
Spalart
,
P. R.
,
1988
, “
Direct Simulation of a Turbulent Boundary Layer up to Re = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.10.1017/S0022112088000345
15.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
,
“Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations,”
J. Comput. Phys.
,
140
, pp.
233
258
.10.1006/jcph.1998.5882
16.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation of Leading Edge Film Cooling—Part II: Heat Transfer and Effect of Blowing Ratio
,”
ASME J. Turbomach.
,
130
, p.
041015
.10.1115/1.2812411
17.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
,
“Effect of Coolant–Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer—LES Investigation,”
Int. J. Heat Fluid Flow
,
29
, pp.
857
873
.10.1016/j.ijheatfluidflow.2008.02.007
18.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
,
“Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications,”
ASME J. Turbomach.
,
111
, pp.
139
145
.10.1115/1.3262248
19.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
,
“Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio,”
ASME J. Turbomach.
,
113
, pp.
442
449
.10.1115/1.2927894
20.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
,
“Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes,”
ASME J. Turbomach.
,
125
, pp.
547
554
.10.1115/1.1580523
21.
Bunker
,
R. S.
,
2009
, “
Turbine Engine Film Cooling Constraints
,” IGTI-VKI Turbo Expo Workshop—Film Cooling and Technology for Gas Turbines, Orlando, FL.
22.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison of the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
ASME
Paper No. GT2008–51036.10.1115/GT2008-51036
23.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
,
“A Dynamic Subgrid-Scale Eddy Viscosity Model,”
Phys. Fluids
,
3
, pp.
1760
1765
.10.1063/1.857955
24.
Bogard
,
D.
,
2008
, Private Communication, Dec. 15.
25.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
,
“Effects of Density Ratio on the Hydrodynamics of Film Cooling,”
ASME J. Turbomach.
,
112
, pp.
437
443
.10.1115/1.2927678
26.
Leedom
,
D. H.
,
2009
, “
Numerical Investigation of Film Cooling Fluid Flow and Heat Transfer Using Large Eddy Simulations
,” M.S. thesis, Louisiana State University, Baton Rouge, LA.
27.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
,
“Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes,”
ASME J. Turbomach.
,
121
, pp.
209
216
.10.1115/1.2841303
28.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
,
“Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
, pp.
146
152
.10.1115/1.555436
29.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz.
,
A.
, and
Wittig
,
M.
,
1997
,
“Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
, pp.
533
540
.10.1115/1.2819277
You do not currently have access to this content.