Nongray phonon transport solvers based on the Boltzmann transport equation (BTE) are being increasingly employed to simulate submicron thermal transport in semiconductors and dielectrics. Typical sequential solution schemes encounter numerical difficulties because of the large spread in scattering rates. For frequency bands with very low Knudsen numbers, strong coupling between other BTE bands result in slow convergence of sequential solution procedures. This is due to the explicit treatment of the scattering kernel. In this paper, we present a hybrid BTE-Fourier model which addresses this issue. By establishing a phonon group cutoff Knc, phonon bands with low Knudsen numbers are solved using a modified Fourier equation which includes a scattering term as well as corrections to account for boundary temperature slip. Phonon bands with high Knudsen numbers are solved using the BTE. A low-memory iterative solution procedure employing a block-coupled solution of the modified Fourier equations and a sequential solution of BTEs is developed. The hybrid solver is shown to produce solutions well within 1% of an all-BTE solver (using Knc = 0.1), but with far less computational effort. Speedup factors between 2 and 200 are obtained for a range of steady-state heat transfer problems. The hybrid solver enables efficient and accurate simulation of thermal transport in semiconductors and dielectrics across the range of length scales from submicron to the macroscale.

References

References
1.
International Technology Roadmap for Semiconductors (ITRS),
2002
.
2.
Kittle
,
C.
,
1996
,
Introduction to Solid State Physics
,
John Wiley
,
New York
.
3.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2006
, “
Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction
,”
Adv. Heat Transfer
,
39
, pp.
169
255
.10.1016/S0065-2717(06)39002-8
4.
Sun
,
L.
, and
Murthy
,
J. Y.
,
2006
, “
Domain Size Effects in Molecular Dynamics Simulation of Phonon Transport in Silicon
,”
Appl. Phys. Lett.
,
89
, p.
171919
.10.1063/1.2364062
5.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
, pp.
141
152
.
6.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
Z.
,
2007
, “
The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport
,”
Numer. Heat Transfer, Part B
,
51
, pp.
333
349
.10.1080/10407790601144755
7.
Datta
,
S.
,
2005
,
Quantum Transport: Atom to Transistor
,
Cambridge University Press
,
Cambridge, UK
.
8.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
2003
, “
An Improved Computational Procedure for Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
,
125
, pp.
904
910
.10.1115/1.1603775
9.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
,
2005
, “
Review of Multiscale Simulation in Submicron Heat Transfer
,”
Int. J. Multiscale Comp. Eng.
,
3
, pp.
5
32
.10.1615/IntJMultCompEng.v3.i1.20
10.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2004
, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
,
126
, pp.
946
955
.10.1115/1.1833367
11.
Ni
,
C.
,
2009
, “
Phonon Transport Models for Heat Conduction With Application to Microelectronics
,” Ph.D. thesis, Purdue University,
West Lafayette, IN
.
12.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
,
2008
, “
Thermal Transport in Finite-Sized Nanocomposites
,” Proceedings of the
ASME
Heat Transfer Summer Conference, Jacksonville, FL, Paper No. HT2008-56385. 10.1115/HT2008-56385
13.
Sverdrup
,
P. G.
,
2000
, “
Simulation and Thermometry of Sub-Continuum Heat Transfer in Semiconductor Devices
,” Ph.D. thesis, Stanford University, Palo Alto, CA.
14.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
,
Mircroscale Heat Conduction in Integrated Circuits and Their Constituent Films
,
Kluwer Academic Publishers
,
Norwell, MA
.
15.
Jacoboni
,
C.
, and
Lugli
,
P.
,
1989
,
The Monte Carlo Method for Semiconductor Device Simulation
,
Springer Verlag
,
Vienna
.
16.
Case
,
K. M.
,
1960
, “
Elementary Solutions of the Transport Equation and Their Applications
,”
Ann. Phys.
,
9
, pp.
1
23
.10.1016/0003-4916(60)90060-9
17.
Chui
,
E. H.
, and
Raithby
,
G. D.
,
1992
, “
Implicit Solution Scheme to Improve Convergence Rate in Radiative Transfer Problems
,”
Numer. Heat Transfer.
,
22
, pp.
251
272
.10.1080/10407799208944983
18.
Fiveland
,
V. A.
, and
Jessee
,
J. P.
,
1996
, “
Acceleration Schemes for the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer.
,
10
, pp.
445
451
.10.2514/3.809
19.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
1999
, “
Coupled Ordinates Method for Multigrid Acceleration
,”
J. Thermophys. Heat Transfer.
,
13
, pp.
467
473
.10.2514/2.6485
20.
Hassanzadeh
,
P.
,
Raithby
,
G. D.
, and
Chui
,
E. H.
,
2008
, “
Efficient Calculation of Radiation Heat Transfer in Participating Media
,”
J. Thermophys. Heat Transfer.
,
22
, pp.
129
139
.10.2514/1.33271
21.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2009
, “
An Acceleration Technique for the Computation of Participating Radiative Heat Transfer
,” Proceedings of
IMECE
, Lake Buena Vista, FL, pp.
709
717
. 10.1115/IMECE2009-12923
22.
Wang
,
T. J.
,
2007
, “
Sub-Micron Thermal Transport in Ultra-Scaled Metal Oxide Semiconductor (MOS) Devices
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
23.
Pascual-Gutiérrez
,
J.
,
Murthy
,
J. Y.
, and
Viskanta
,
R.
,
2009
, “
Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential
,”
J. Appl. Phys.
,
106
, p.
063532
.10.1063/1.3195080
24.
Mazumder
,
S.
,
2005
, “
A New Numerical Procedure for Coupling Radiation in Participating Media With Other Modes of Heat Transfer
,”
ASME J. Heat Transfer.
,
127
, pp.
1037
1045
.10.1115/1.1929780
25.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
26.
Briggs
,
W. L.
,
Henson
,
V. E.
, and
McCormick
,
S. F.
,
2000
,
A Multigrid Tutorial
,
SIAM, Philadelphia
,
PA
.
27.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
,
1986
, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer
,
9
, pp.
511
537
.10.1080/10407788608913491
28.
Heaslet
,
M. A.
, and
Warming
,
R. F.
,
1964
, “
Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium
,”
Int. J. Heat Mass Transfer
,
8
, pp.
979
994
.10.1016/0017-9310(65)90083-9
29.
Modest
,
M.
,
2003
,
Radiative Heat Transfer
,
Academic Press
,
New York.
30.
Mingo
,
N.
,
Yang
,
L.
,
Li
,
D.
, and
Majumdar
,
A.
,
2003
, “
Predicting the Thermal Conductivity of Si and Ge Nanowires
,”
Nano Lett.
,
3
, pp.
1713
1716
.10.1021/nl034721i
31.
Loy
,
J.
,
2010
, “
An Acceleration Technique for the Solution of the Phonon Boltzmann Transport Equation
,” M.S. thesis, Purdue University, West Lafayette, IN.
You do not currently have access to this content.