Sequential Monte Carlo (SMC) or particle filter methods, which have been originally introduced in the beginning of the 1950s, became very popular in the last few years in the statistical and engineering communities. Such methods have been widely used to deal with sequential Bayesian inference problems in the fields like economics, signal processing, and robotics, among others. SMC methods are an approximation of sequences of probability distributions of interest, using a large set of random samples, named particles. These particles are propagated along time with a simple Sampling Importance distribution. Two advantages of this method are: they do not require the restrictive hypotheses of the Kalman filter, and they can be applied to nonlinear models with non-Gaussian errors. This paper uses two SMC filters, namely the SIR (sampling importance resampling filter) and the ASIR (auxiliary sampling importance resampling filter) to estimate a heat flux on the wall of a square cavity encasing a liquid undergoing natural convection. Measurements, which contain errors, taken at the boundaries of the cavity were used in the estimation process. The mathematical model as well as the initial condition are supposed to have some errors, which were taken into account in the probabilistic evolution model used for the filter. Also, the results using different grid sizes and patterns for the direct and inverse problems were used to avoid the so-called inverse crime. In these results, additional errors were considered due to the different location of the grid points used. The final results were remarkably good when using the ASIR filter.

References

1.
Kaipio
,
J.
, and
Somersalo
,
E.
, 2004,
Statistical and Computational Inverse Problems
(Applied Mathematical Sciences, Vol.
160
),
Springer-Verlag
,
Berlin
.
2.
Maybeck
,
P.
, 1979,
Stochastic Models, Estimation and Control
,
Academic Press
,
New York
.
3.
Winkler
,
R.
, 2003,
An Introduction to Bayesian Inference and Decision
,
Probabilistic Publishing
,
Gainsville, FL
.
4.
Kaipio
,
J.
,
Duncan
,
S.
,
Seppanen
,
A.
,
Somersalo
,
E.
, and
Voutilainen
,
A.
, 2005, “
State Estimation for Process Imaging
,”
Handbook of Process Imaging for Automatic Control
,
D.
Scott
and
H.
McCann
, eds.,
CRC Press
,
Boca Raton, FL
.
5.
Kalman
,
R.
, 1960, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
, pp.
35
45
.
6.
Sorenson
,
H.
, 1970, “
Least-Squares Estimation: From Gauss to Kalman
,”
IEEE Spectrum
,
7
, pp.
63
68
.
7.
Welch
,
G.
, and
Bishop
,
G.
, 2006, An Introduction to the Kalman Filter, UNC, Chapel Hill, Report No. TR 95-041.
8.
Arulampalam
,
S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
, 2001, “
A Tutorial on Particle Filters for On-Line Non-Linear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
, pp.
174
188
.
9.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
, 2004,
Beyond the Kalman Filter
,
Artech House
,
Boston
.
10.
Doucet
,
A.
,
Godsill
,
S.
, and
Andrieu
,
C.
, 2000, “
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
,”
Stat. Comput.
,
10
, pp.
197
208
.
11.
Liu
,
J.
, and
Chen
,
R.
, 1998, “
Sequential Monte Carlo Methods for Dynamical Systems
,”
J. Am. Stat. Assoc.
,
93
, pp.
1032
1044
.
12.
Andrieu
,
C.
,
Doucet
,
A.
, and
Robert
,
C.
, 2004, “
Computational Advances for and From Bayesian Analysis
,”
Stat. Sci.
,
19
, pp.
118
127
.
13.
Johansen
,
A.
, and
Doucet
,
A.
, 2008, “
A Note on Auxiliary Particle Filters
,”
Stat. Probab. Lett.
,
78
(
12
), pp.
1498
1504
.
14.
Carpenter
,
J.
,
Clifford
,
P.
, and
Fearnhead
,
P.
, 1999, “
An Improved Particle Filter for Non-Linear Problems
,”
IEE Proc., Radar Sonar Navig.
,
146
, pp.
2
7
.
15.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
, 2007, “
Sequential Monte Carlo for Bayesian Computation
,”
Bayesian Statistics
, Vol.
8
,
Oxford University Press, Cary
,
North Carolina
, pp.
1
34
.
16.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
, 2006, “
Sequential Monte Carlo Samplers
,”
J. R. Stat. Soc.
,
68
, pp.
411
436
.
17.
Andrieu
,
C.
,
Doucet
,
A.
,
Singh
,
S. S.
, and
Tadic
,
V. B.
, 2004, “
Particle Methods for Charge Detection, System Identification and Control
,”
Proc. IEEE
,
92
, pp.
423
438
.
18.
Hammersley
,
J. M.
, and
Hanscomb
,
D. C.
, 1964,
Monte Carlo Methods
,
Chapman and Hall
,
London
.
19.
Gordon
,
N.
,
Salmond
,
D.
, and
Smith
,
A. F. M.
, 1993, “
Novel Approach to Nonlinear and Non-Gaussian Bayesian State Estimation
,”
IEE Proc. F, Radar Signal Process.
,
140
, pp.
107
113
.
20.
Orlande
,
H.
,
Dulikravich
,
G.
, and
Colaço
,
M.
, 2008, “
Application of Bayesian Filters to Heat Conduction Problem
,”
EngOpt 2008—International Conference on Engineering Optimization
,
J.
Herskovitz
, ed.,
Rio de Janeiro
,
Brazil
, June 1–5.
21.
Pitt
,
M.
, and
Shephard
,
N.
, 1999, “
Filtering via Simulation: Auxiliary Particle Filters
,”
J. Am. Stat. Assoc.
,
94
(
446
), pp.
590
599
.
22.
Liu
,
J.
, and
West
,
M.
, 2001, “
Combined Parameter and State Estimation in Simulation-Based Filtering
,”
Sequential Monte Carlo Methods in Practice
,
A.
Doucet
,
N.
de Freitas
, and
N.
Gordon
, eds.,
Springer-Verlag
,
New York
, pp.
197
217
.
23.
West
,
M.
, 1993, “
Approximating Posterior Distributions by Mixture
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
55
, pp.
409
422
. Available at: http://www.jstor.org/stable/2346202http://www.jstor.org/stable/2346202.
24.
Sisson
,
S. A.
,
Fan
,
Y.
, and
Tanaka
,
M. M.
, 2009, “
Sequential Monte Carlo Without Likelihoods
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
, pp.
1760
1765
, Errata, 2007.
25.
Batchelor
,
G. K.
, 2000,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge
.
26.
Versteeg
,
H.
, and
Malalasekera
,
W.
, 2007,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
Van Doormal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flow
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.
28.
Raithby
,
G. D.
, and
Torrance
,
K. E.
, 1974, “
Upstream-Weighted Differencing Schemes and Their Application to Elliptic Problems Involving Fluid Flow
,”
Comput. Fluids
,
2
, pp.
191
206
.
29.
Saad
,
Y.
, and
Schultz
,
M.
, 1985, “
Conjugate Gradient-Like Algorithms for Solving Non-Symmetric Linear Systems
,”
Math. Comput.
,
44
(170), pp.
417
424
.
30.
Colaço
,
M. J.
, and
Orlande
,
H. R. B
, 1999, “
A Comparison of Different Versions of the Conjugate Gradient Method of Function Estimation
,”
Numer. Heat Transfer, Part A
,
36
(
2
), pp.
229
249
.
31.
Colaço
,
M. J.
, and
Orlande
,
H. R. B
, 2001, “
Inverse Problem of Simultaneous Estimation of Two Boundary Heat Fluxes in Parallel Plate Channels
,”
J. Braz. Soc. Mech. Eng.
,
23
(
2
), pp.
201
215
.
32.
Colaço
,
M. J.
, and
Orlande
,
H. R. B
, 2001, “
Inverse Forced Convection Problem of Simultaneous Estimation of Two Boundary Heat Fluxes in Irregularly Shaped Channels
,”
Numer. Heat Transfer, Part A
,
39
, pp.
737
760
.
33.
Colaço
,
M. J.
,
Dulikravich
,
G. S.
, and
Martin
,
T. J.
, 2004, “
Optimization of Wall Electrodes for Electro-Hydrodynamic Control of Natural Convection During Solidification
,”
Mater. Manuf. Processes
,
19
(
4
), pp.
719
736
.
34.
Colaço
,
M. J.
, and
Orlande
,
H. R. B
, 2004, “
Inverse Natural Convection Problem of Simultaneous Estimation of Two Boundary Heat Fluxes in Irregular Cavities
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1201
1215
.
35.
Colaço
,
M. J.
,
Dulikravich
,
G. S.
, and
Martin
,
T. J.
, 2005, “
Control of Unsteady Solidification via Optimized Magnetic Fields
,”
Mater. Manuf. Processes
,
20
(
3
), pp.
435
458
.
36.
Colaço
,
M. J.
, and
Dulikravich
,
G. S.
, 2006, “
A Multilevel Hybrid Optimization of Magnetohydrodynamic Problems in Double-Diffusive Fluid Flow
,”
J. Phys. Chem. Solids
,
67
, pp.
1965
1972
.
37.
Colaço
,
M. J.
, and
Dulikravich
,
G. S.
, 2007, “
Solidification of Double-Diffusive Flows Using Thermo-Magneto-Hydrodynamics and Optimization
,”
Mater. Manuf. Processes
,
22
, pp.
594
606
.
38.
Beck
,
J. V.
, and
Arnold
,
K. J.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley Interscience
,
New York
.
39.
Calvetti
,
D.
, and
Somersalo
,
E.
, 2007,
Introduction to Bayesian Scientific Computing
,
Springer
,
New York
.
40.
Tan
,
S.
,
Fox
,
C.
, and
Nicholls
,
G.
, 2006,
Inverse Problems
(Course Notes for Physics 707),
University of Auckland
,
Auckland, New Zealand
.
41.
Lee
,
P. M.
, 2004,
Bayesian Statistics
,
Oxford University Press
,
London
.
42.
Gamerman
,
D.
, and
Lopes
,
H. F.
, 2006,
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
, 2nd ed.,
Chapman and Hall/CRC
,
Boca Raton, FL
.
43.
Wang
,
J.
, and
Zabaras
,
N.
, 2004, “
A Bayesian Inference Approach to the Stochastic Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3927
3941
.
44.
Wang
,
J.
, and
Zabaras
,
N.
, 2004, “
A Computational Statistics Approach to Stochastic Inverse Problems and Uncertainty Quantification in Heat Transfer
,”
Proceedings of the VI World Conference on Computational Mechanics
, Beijing, China, Sept. 5–10.
45.
Mota
,
C. A. A.
,
Orlande
,
H. R. B.
,
Wellele
,
O.
,
Kolehmainen
,
V.
, and
Kaipio
,
J.
, 2009, “
Inverse Problem of Simultaneous Identification of Thermophysical Properties and Boundary Heat Flux
,”
High Temp. – High Press.
,
38
, pp.
171
185
.
46.
Orlande
,
H. R. B.
,
Kolehmainen
,
V.
, and
Kaipio
,
J. P.
, 2007, “
Reconstruction of Thermal Parameters Using a Tomographic Approach
,”
Int. J. Heat Mass Transfer
,
50
, pp.
5150
5160
.
47.
Emery
,
A. F.
, 2007, “
Estimating Deterministic Parameters by Bayesian Inference With Emphasis on Estimating the Uncertainty of the Parameters
,”
Proceedings of the Inverse Problem, Design and Optimization Symposium
,
G.
Dulikravich
,
H.
Orlande
, and
M.
Colaco
, eds., Miami Beach, FL, Vol.
1
, pp.
266
272
.
48.
Mota
,
C.
,
Orlande
,
H.
,
De Carvalho
,
M.
,
Kolehmainen
,
V.
, and
Kaipio
,
J.
, 2010, “
Bayesian Estimation of Temperature-Dependent Thermophysical Properties and Transient Boundary Heat Flux
,”
Heat Transfer Eng.
,
31
, pp.
570
580
.
49.
Naveira-Cotta
,
C.
,
Orlande
,
H.
, and
Cotta
,
R.
, 2010, “
Integral Transforms and Bayesian Inference in the Identification of Variable Thermal Conductivity in Two-Phase Dispersed Systems
,”
Numer. Heat Transfer
,
57
, pp.
173
202
.
50.
Naveira-Cotta
,
C.
,
Cotta
,
R.
, and
Orlande
,
H.
, 2010, “
Inverse Analysis of Forced Convection in Micro-Channels With Slip Flow via Integral Transforms and Bayesian Inference
,”
Int. J. Therm. Sci.
,
49
, pp.
879
888
.
51.
Naveira-Cotta
,
C.
,
Orlande
,
H.
,
Cotta
,
R.
, and
Nunes
,
J.
, 2010, “
Integral Transforms, Bayesian Inference, and Infrared Thermography in the Simultaneous Identification of Variable Thermal Conductivity and Diffusivity in Heterogeneous Media
,”
Proceedings of the International Heat Transfer Conference IHTC14
, Washington, DC, Aug. 8–13, Paper No. IHTC14-22511.
52.
Fudym
,
O.
,
Orlande
,
H. R. B.
,
Bamford
,
M.
, and
Batsale
,
J. C.
, 2008, “
Bayesian Approach for Thermal Diffusivity Mapping From Infrared Images With Spatially Random Heat Pulse Heating
,”
J. Phys.: Conf. Ser.
,
135
, pp.
12
42
.
53.
Massard
,
H.
,
Fudym
,
O.
,
Orlande
,
H. R. B.
, and
Batsale
,
J. C.
, 2010, “
Nodal Predictive Error Model and Bayesian Approach for Thermal Diffusivity and Heat Source Mapping
,”
C. R. Méc.
,
338
, pp.
434
449
.
54.
Orlande
,
H.
,
Colaço
,
M.
, and
Dulikravich
,
G.
, 2008, “
Approximation of the Likelihood Function in the Bayesian Technique for the Solution of Inverse Problems
,”
Inverse Probl. Sci. Eng.
,
16
(
6
), pp.
677
692
.
55.
Parthasarathy
,
S.
, and
Balaji
,
C.
, 2008, “
Estimation of Parameters in Multi-Mode Heat Transfer Problems Using Bayesian Inference—Effect of Noise and a priori
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2313
2334
.
56.
Kaipio
,
J.
, and
Fox
,
C.
, “
The Bayesian Framework for Inverse Problems in Heat Transfer
,”
Heat Transfer Eng.
,
32
(
9
), pp.
718
753
.
57.
Godsill
,
S.
,
Doucet
,
A.
, and
West
,
M.
, 2004, “
Monte Carlo Smoothing for Nonlinear Time Series
,”
J. Am. Stat. Assoc.
,
99
, pp.
156
168
.
58.
Doucet
,
A.
,
Freitas
,
N.
, and
Gordon
,
N.
, 2001,
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
.
You do not currently have access to this content.