The double notched (DN) plate is commonly used in rotary air preheaters, but relevant investigations are rare. Thus, thermal-hydraulic performances of the DN plate are investigated in this paper. A single-blow, transient technique is refined and then used to measure the overall mean heat transfer coefficients and friction factors. A validated numerical method is also utilized to provide local information. The measured results show that the performance of the DN plate approaches that of the double undulated (DU) plate and lies between that of the cross corrugated (CC) plate and the parallel plate. No swirling flow pattern is identified in the predicted velocity fields. Basically, two types of flow are observed: wavy channel flow and pipe flow. High or low Nusselt numbers, Nu, are obtained at the luff or lee side of undulations and notches, respectively. Nu values increase and Nu distributions become more homogenous with increasing Reynolds numbers, Re. A recommendation is made that the DN plate be operated under moderate Re to achieve homogenous and enhanced heat transfer, given the allowable pressure drop.

References

1.
Chew
,
P. E.
, 1985, “
Rotary Air Preheaters on Power Station Boilers
,”
Proceedings of the Symposium on Waste Heat Recovery and Utilisation
,
Institute of Energy
,
UK.
2.
Stasiek
,
J.
,
Collins
,
M. W.
,
Ciofalo
,
M.
, and
Chew
,
P. E.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—I. Experimental Results
,”
Int. J. Heat Mass Transfer
,
39
(
1
), pp.
149
164
.
3.
Ciofalo
,
M.
,
Collins
,
M. W.
, and
Stasiek
,
J. A.
, 1998,
Flow and Heat Transfer Predictions in Flow Passages of Air Preheaters: Assessment of Alternative Modeling Approaches
,
Computational Mechanics Publications
,
Southampton, UK
, pp.
169
225
.
4.
Zhang
,
L.
, and
Che
,
D.
, 2011, “
Influence of Corrugation Profile on the Thermalhydraulic Performance of Cross-Corrugated Plates
,”
Numer. Heat Transfer, Part A
,
59
(
4
), pp.
267
296
.
5.
Focke
,
W. W.
,
Zachariades
,
J.
, and
Olivier
,
I.
, 1985, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
28
(
8
), pp.
1469
1479
.
6.
Muley
,
A.
, and
Manglik
,
R. M.
, 1999, “
Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger With Chevron Plates
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
110
117
.
7.
Wang
,
Q. W.
,
Zhang
,
D. J.
, and
Xie
,
G. N.
, 2009, “
Experimental Study and Genetic-Algorithm-Based Correlation on Pressure Drop and Heat Transfer Performances of a Cross-Corrugated Primary Surface Heat Exchanger
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061802
.
8.
Muley
,
A.
,
Manglik
,
R. M.
, and
Metwally
,
H. M.
, 1999, “
Enhanced Heat Transfer Characteristics of Viscous Liquid Flows in a Chevron Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
1011
1017
.
9.
Rao
,
B. P.
,
Sunden
,
B.
, and
Das
,
S. K.
, 2005, “
An Experimental and Theoretical Investigation of the Effect of Flow Maldistribution on the Thermal Performance of Plate Heat Exchangers
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
332
343
.
10.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M. W.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
39
(
1
), pp.
165
192
.
11.
Jain
,
S.
,
Joshi
,
A.
, and
Bansal
,
P. K.
, 2007, “
A New Approach to Numerical Simulation of Small Sized Plate Heat Exchangers With Chevron Plates
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
291
297
.
12.
Zhang
,
L. Z.
, 2005, “
Turbulent Three-Dimensional Air Flow and Heat Transfer in a Cross-Corrugated Triangular Duct
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1151
1158
.
13.
Blomerius
,
H.
,
Holsken
,
C.
, and
Mitra
,
N. K.
, 1999, “
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
314
321
.
14.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
15.
Kays
,
W. M.
, and
London
,
A. L.
, 1950, “
Heat Transfer and Flow Friction Characteristics of Some Compact Heat Exchanger Surfaces
,”
Trans. ASME
,
72
, pp.
1075
1097
.
16.
Loehrke
,
R. I.
, 1990, “
Evaluating the Results of the Single-Blow Transient Heat Exchanger Test
,”
Exp. Therm. Fluid Sci.
,
3
(
6
), pp.
574
580
.
17.
Liang
,
C. Y.
, and
Yang
,
W. J.
, 1975, “
Modified Single-Blow Technique for Performance Evaluation on Heat Transfer Surfaces
,”
ASME J. Heat Transfer
,
97
(
1
), pp.
16
21
.
18.
Schumann
,
T. E. W.
, 1929, “
Heat Transfer: A Liquid Flowing Through a Porous Prism
,”
J. Franklin Inst.
,
28
(
1
), pp.
405
416
.
19.
Furnas
,
C. C.
, 1932, “
Heat Transfer From a Gas Stream to a Bed of Broken Solids
,” US Bureau of Mines Bulletin No. 361.
20.
Pucci
,
P. F.
,
Howard
,
C. P.
, and
Piersall
,
C. H.
, Jr.
, 1967, “
The Single-Blow Transient Testing Technique for Compact Heat Exchanger Surfaces
,”
ASME J. Eng. Power
, Series A,
89
(
2
), pp.
29
40
.
21.
Mullisen
,
R. S.
, and
Loehrke
,
R. I.
, 1986, “
A Transient Heat Exchanger Evaluation Test for Arbitrary Fluid Inlet Temperature Variation and Longitudinal Core Conduction
,”
ASME J. Heat Transfer
,
108
(
2
), pp.
370
376
.
22.
Krishnakumar
,
K.
,
John
,
A. K.
, and
Venkatarathnam
,
G.
, 2011, “
A Review on Transient Test Techniques for Obtaining Heat Transfer Design Data of Compact Heat Exchanger Surfaces
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
738
743
.
23.
Cheng
,
C.
, and
Huang
,
C.
, 1994, “
Extended Model for Single-Blow Transient Testing Method in Evaluating Thermal Performance of Heat Transfer Surfaces
,”
Int. Commun. Heat Mass Transfer
,
21
(
1
), pp.
53
63
.
24.
Sheer
,
T. J.
,
De Klerk
,
G. B.
,
Jawurek
,
H. H.
, and
Lander
,
M.
, 2006, “
A Versatile Computer Simulation Model for Rotary Regenerative Heat Exchangers
,”
Heat Transfer Eng.
,
27
(
5
), pp.
68
79
.
25.
Tao
,
W.
, 2002,
Numerical Heat Transfer
,
Xi’an Jiaotong University Press, Xi’an
, pp.
39
43
.
26.
Tao
,
W.
, 1991,
Computational Fluid Dynamics and Heat Transfer
,
China Architecture & Building Press
,
Beijing
, pp.
25
27
.
27.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
28.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
, 1998,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
, Chap. V.
29.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
, 1985, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
,
23
(
9
), pp.
1308
1319
.
30.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
, 1981, “
A Modified Form of the K-Ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.
31.
Song
,
G.-D.
, and
Nishino
,
K.
, 2008, “
Conjugate Heat Transfer Computation for Evaluation of Single-Blow Method for Compact Fin-Tube Heat Exchangers
,”
J. Therm. Sci. Technol.
,
3
(
2
), pp.
219
233
.
32.
Gaiser
,
G.
, and
Kottke
,
V.
, 1989, “
Flow Phenomena and Local Heat and Mass Transfer in Corrugated Passages
,”
Chem. Eng. Technol.
,
12
(
1
), pp.
400
405
.
You do not currently have access to this content.