Heat sinks with liquid forced convection in microchannels are targeted for cooling electronic devices with a high dissipated power density. Given the inherent stability problems associated with two-phase microchannel heat transfer, this paper investigates experimentally the potential for enhancing single-phase convection cooling rates by applying pulsating flow. To this end, a pulsator device is developed which allows independent continuous control of pulsation amplitude and frequency. For a single minichannel geometry (1.9 mm hydraulic diameter) and a wide range of parameters (steady and pulsating Reynolds number, Womersley number), experimental results are presented for the overall heat transfer enhancement compared to the steady flow case. Enhancement factors up to 40% are observed for the investigated parameter range (Reynolds number between 100 and 650, ratio of pulsating to steady Reynolds number between 0.002 and 3, Womersley number between 6 and 17). Two regimes can be discerned: for low pulsation amplitude (corresponding to a ratio of pulsating to steady Reynolds number below 0.2), a small heat transfer reduction is observed similar to earlier analytical and numerical predictions. For higher amplitudes, a significant heat transfer enhancement is observed with a good correspondence to a power law correlation. This work establishes a reference case for future studies of the effect of flow unsteadiness in small scale heat sinks.

References

References
1.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
, 2007, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
, pp.
258
281
.
2.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1688
1704
.
3.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
Trans. ASME, J. Heat Transfer
,
126
, pp.
8
16
.
4.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2004, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3631
3641
.
5.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
, 2002, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3275
3286
.
6.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
, 2001, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
24
, pp.
16
23
.
7.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
, 2006, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
Trans. ASME, J. Heat Transfer
,
128
, pp.
389
396
.
8.
Moschandreou
,
T.
, and
Zamir
,
M.
, 1997, “
Heat Transfer in a Tube With Pulsating Flow and Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
40
, pp.
2461
2466
.
9.
Hemida
,
H. N.
,
Sabry
,
M. N.
,
Abdel-Rahim
,
A.
, and
Mansour
,
H.
, 2002, “
Theoretical Analysis of Heat Transfer in Laminar Pulsating Flow
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1767
1780
.
10.
Craciunescu
,
O. I.
, and
Clegg
,
S. T.
, 2001, “
Pulsatile Blood Flow Effects on Temperature Distribution and Heat Transfer in Rigid Vessels
,”
J. Biomech. Eng., Trans. ASME
,
123
, pp.
500
505
.
11.
Elshafei
,
E. A. M.
,
Mohamed
,
M. S.
,
Mansour
,
H.
, and
Sakr
,
M.
, 2008, “
Experimental Study of Heat Transfer in Pulsating Turbulent Flow in a Pipe
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1029
1038
.
12.
Nishimura
,
T.
,
Oka
,
N.
,
Yoshinaka
,
Y.
, and
Kunitsugu
,
K.
, 2000, “
Influence of Imposed Oscillatory Frequency on Mass Transfer Enhancement of Grooved Channels for Pulsatile Flow
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2365
2374
.
13.
Olayiwola
,
B.
, and
Walzel
,
P.
, 2008, “
Cross-Flow Transport and Heat Transfer Enhancement in Laminar Pulsed Flow
,”
Chem. Eng. Process.
,
47
, pp.
929
937
.
14.
Olayiwola
,
B.
, and
Walzel
,
P.
, 2009, “
Experimental Investigation of the Effects of Fluid Properties and Geometry on Forced Convection in Finned Ducts With Flow Pulsation
,”
Trans. ASME, J. Heat Transfer
,
131
,
051701
.
15.
Pavlova
,
A.
, and
Amitay
,
M.
, 2006, “
Electronic Cooling Using Synthetic Jet Impingement
,”
Trans. ASME, J. Heat Transfer
,
128
, pp.
897
907
.
16.
Valiorgue
,
P.
,
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
, 2009, “
Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing
,”
Exp. Therm. Fluid Sci.
,
33
, pp.
597
603
.
17.
Persoons
,
T.
,
O’Donovan
,
T. S.
, and
Murray
,
D. B.
, 2009, “
Heat Transfer in Adjacent Interacting Impinging Synthetic Jets
,”
Proceedings of ASME Summer Heat Transfer Conference 2009 (HT2009)
, Vol.
1
, pp.
955
962
.
18.
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
, 2011, “
A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet
,”
Int. J Heat Mass Transfer
,
54
, pp.
3900
3908
.
19.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
, 1993, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
Trans. ASME, J. Heat Transfer
,
115
, pp.
91
97
.
20.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons
,
New York
.
21.
Persoons
,
T.
, and
O’Donovan
,
T. S.
, 2007, “
A Pressure-Based Estimate of Synthetic Jet Velocity
,”
Phys. Fluids
,
19
,
128104
.
22.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1980,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
23.
Phillips
,
R. J.
, 1987, “
Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks
,” M.Sc. thesis, Massachusetts Institute of Technology, Cambridge, MA.
24.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer (Supplement 1)
,
T. F.
Irvine
, and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
, pp.
379
381
.
25.
Edwards
,
D. K.
,
Denny
,
V. E.
, and
Mills
,
A. F.
, 1979,
Transfer Processes
, 2nd ed.,
Hemisphere
,
Washington, DC
.
26.
Lee
,
P.-S.
, and
Garimella
,
S. V.
, 2006, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3060
3067
.
27.
White
,
F. M.
, 1991,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
,
New York
, pp.
135
148
.
28.
Kurzweg
,
U. H.
, 1985, “
Enhanced Heat Conduction in Oscillating Viscous Flows Within Parallel-Plate Channels
,”
J. Fluid Mech.
,
156
, pp.
291
300
.
29.
Berger
,
S. A.
, and
Talbot
,
L.
, 1983, “
Flow in curved pipes
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
461
512
.
30.
Rutten
,
F.
,
Meinke
,
M.
, and
Schroder
,
W.
, 2001, “
Large-Eddy Simulations of 90 Degrees Pipe Bend Flows
,”
J. Turbul.
,
2
, pp.
1
14
.
31.
Tunstall
,
M. J.
, and
Harvey
,
J. K.
, 1968, “
On the Effect of a Sharp Bend in a Fully Developed Turbulent Pipe Flow
,”
J. Fluid Mech.
,
34
, pp.
595
608
.
32.
Sumida
,
M.
, 2007, “
Pulsatile Entrance Flow in Curved Pipes: Effect of Various Parameters
,”
Exp. Fluids
,
43
, pp.
949
958
.
You do not currently have access to this content.