A sub-micron thermal transport model based on the phonon Boltzmann transport equation (BTE) is developed using anisotropic relaxation times. A previously-published model, the full-scattering model, developed by Wang, directly computes three-phonon scattering interactions by enforcing energy and momentum conservation. However, it is computationally very expensive because it requires the evaluation of millions of scattering interactions during the iterative numerical solution procedure. The anisotropic relaxation time model employs a single-mode relaxation time, but the relaxation time is derived from detailed consideration of three-phonon interactions satisfying conservation rules, and is a function of wave vector. The resulting model is significantly less expensive than the full-scattering model, but incorporates directional and dispersion behavior. A critical issue in the model development is the role of three-phonon normal (N) scattering processes. Following Callaway, the overall relaxation rate is modified to include the shift in the phonon distribution function due to N processes. The relaxation times so obtained are compared with the data extracted from equilibrium molecular dynamics simulations by Henry and Chen. The anisotropic relaxation time phonon BTE model is validated by comparing the predicted thermal conductivities of bulk silicon and silicon thin films with experimental measurements. The model is then used for simulating thermal transport in a silicon metal-oxide-semiconductor field effect transistor (MOSFET) and leads to results close to the full-scattering model, but uses much less computation time.

References

References
1.
Chen
,
G.
, 1998, “
Phonon Wave Effects on Heat Conduction in Thin Films
,”
AIAA/ASME Joint Thermophysics and Heat Transfer Conference
, ASME, pp.
205
213
.
2.
Chen
,
G.
, 2000, “
Particularities of Heat Conduction in Nanostructures
,”
J. Nanopart. Res.
,
2
, pp.
199
204
.
3.
Sverdrup
,
P. G.
, 2000, “
Simulation and Thermometry of Sub-Continuum Heat Transport in Semiconductor Devices
,” Ph.D. thesis, Stanford University, Palo Alto, CA.
4.
Ju
,
Y. S.
, 1999, “
Microscale Heat Conduction in Integrated Circuits and Their Constituent Films
,” Ph.D. thesis, Stanford University, Palo Alto, CA.
5.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2005, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME Trans. J. Heat Transfer
,
127
(7), pp.
713
723
.
6.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2006, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
J. Heat Transfer
,
42
(6), pp.
478
491
.
7.
Wang
,
T. J.
, 2007, “
Sub-Micron Thermal Transport in Ultra-Scaled Metal Oxide Semiconductor (MOS) Devices
,” Ph.D. thesis, School of Mechanical Engineering, Purdue University, West Lafayette, IN.
8.
Sinha
,
S.
,
Pop
,
E.
,
Dutton
,
R.
, and
Goodson
,
K. E.
, 2006, “
Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors
,”
ASME Trans. J. Heat Transfer
,
128
, pp.
638
647
.
9.
Yang
,
R.
, and
Chen
,
G.
, 2004, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
,
69
(19), p.
195316
.
10.
Chung
,
J. D.
, and
Kaviany
,
M.
, 2000, “
Effects of Phonon Pore Scattering and Pore Randomness on Effective Conductivity of Porous Silicon
,”
Int. J. Heat Mass Transfer
,
43
, pp.
521
538
.
11.
Majumdar
,
A.
, 1998, “
Microscale Energy Transport in Solids
,”
Microscale Energy Transport
,
C. L.
Tien
,
A.
Majumdar
, and
F. M.
Gerner
, eds.,
Taylor and Francis
,
Washington, DC
, pp.
1
94
.
12.
Klemens
,
P. G.
, 1958, “
Thermal Conductivity and Lattice Vibrational Modes
,”
Solid State Physics
, Vol.
7
,
F.
Seitz
and
D.
Turnbull
, eds.,
Academic Press Inc.
,
New York
, pp.
1
98
.
13.
Rowlette
,
J. A.
, and
Goodson
,
K. E.
, 2008, “
Fully Coupled Non-Equilibrium Electron-Phonon Transport in Nanometer-Scale Silicon FETs
,”
IEEE Trans. Electron Devices
,
55
(
1
), pp.
220
232
.
14.
Pop
,
E.
,
Dutton
,
R.
, and
Goodson
,
K. E
, 2004, “
Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
,
96
, pp.
4998
5005
.
15.
Omini
,
M.
, and
Sparavigna
,
A.
, 1996, “
Beyond the Isotropic-Model Approximation in the Theory of Thermal Conductivity
,”
Phys. Rev. B
,
53
(14), pp.
9064
9073
.
16.
Omini
,
M.
, and
Sparavigna
,
A.
, 1997, “
Heat Transport in Dielectric Solids With Diamond Structure
,”
Nouvo Cimento D
,
19
, pp.
1537
1564
.
17.
Sparavigna
,
A.
, 2003, “
Role of Nonpairwise Interactions on Phonon Thermal Transport
,”
Phys. Rev. B
,
67
(14), p.
144305
.
18.
Broido
,
D. A.
,
Ward
,
A.
, and
Mingo
,
N.
, 2005, “
Lattice Thermal Conductivity of Silicon From Empirical Interatomic Potentials
,”
Phys. Rev. B
,
72
(1), p.
014308
.
19.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
, 2007, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(23), p.
231922
.
20.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
, 2011, “
Mechanism of Thermal Conductivity Reduction in Few-Layer Graphene
,”
J. Appl. Phys.
,
110
(4), p.
044317
.
21.
Callaway
,
J.
, 1959, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
, pp.
1046
1051
.
22.
Henry
,
A. S.
, and
Chen
,
G.
, 2008, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulation and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
, pp.
1
12
.
23.
Weber
,
W.
, 1977, “
Adiabatic Bond Charge Model for the Phonons in Diamond, Si, Ge, and Alpha-Sn
,”
Phys. Rev. B
,
16
, pp.
4789
4803
.
24.
Nilsson
,
G.
, and
Helin
,
G.
, 1972, “
Study of the Homology Between Silicon and Germanium by Thermal-Neutron Spectrometry
,”
Phys. Rev. B
,
6
, pp.
3777
3786
.
25.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2003, “
An Improved Computational Procedure for Sub-Micron Heat Conduction
,”
ASME Trans. J. Heat Transfer
,
125
(
5
), pp.
904
910
.
26.
Ashcroft
,
N.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Thomson Learning
, Inc.,
Philadelphia
.
27.
Liu
,
F.
,
Becker
,
H. A.
, and
Pollard
,
A.
, 1996, “
Spatial Differencing Schemes of the Discrete-Ordinates Method
,”
Numer. Heat Transfer, Part B
,
30
, pp.
23
43
.
28.
Ni
,
C.
, 2009, “
Phonon Transport Models for Heat Conduction in Sub-Micron Geometries With Application to Microelectronics
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
29.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
30.
Han
,
Y. J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
,
48
(
9
), pp.
6033
6042
.
31.
Casimir
,
H. B. G.
, 1938, “
Notes on the Conduction of Heat in Crystals
,”
Physica
,
5
, pp.
495
500
.
32.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
, pp.
2461
2471
.
33.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
London, UK
.
34.
Bazant
,
M. Z.
,
Kaxiras
,
E.
, and
Justo
,
J. F.
, 1997, “
Environment Dependent Interatomic Potential for Bulk Silicon
,”
Phys. Rev. B
,
56
(
14
), pp.
8542
8552
.
35.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Thin Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3305
3307
.
36.
Aksamija
,
Z.
, and
Ravaioli
,
U.
, 2009, “
Energy Conservation in Collision Broadening Over a Sequence of Scattering Events in Semiclassical Monte Carlo Simulation
,”
J. Appl. Phys.
,
105
(8), p.
083722
.
You do not currently have access to this content.