Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W = 76.2 mm, E = 25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D = 6.35 mm = ¼E, three different pin-fin height-to-diameter ratios, H/D = 4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D = 0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D = 1, i.e., H/D = 3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D = 0 and C/D = 2, i.e., H/D = 4 or 2, respectively.

References

1.
Armstrong
,
J.
, and
Winstanley
,
D.
, 1988, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
, pp.
94
103
.
2.
VanFossen
,
G. J.
, 1982, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,
104
, pp.
268
274
.
3.
Al Dabagh
,
A. M.
, and
Andrews
,
G. E.
, 1992, “
Pin-Fin Heat Transfer: Contribution of the Wall and the Pin to the Overall Heat Transfer
,” ASME Paper No. 92-GT-242.
4.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T.
I.-P., and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Array: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
, pp.
257
263
.
5.
Chyu
,
M. K.
,
Siw
,
S.
, and
Moon
,
H. K.
, 2009, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,” ASME Turbo Expo 2009, Orlando, June 8–12, Paper No. GT2009-59814.
6.
Chyu
,
M. K.
, and
Goldstein
,
R. J.
, 1991, “
Influence of an Array of Wall-Mounted Cylinders on the Mass Transfer From a Flat Surface
,”
Int. J. Heat Mass Transfer
,
34
(
9
), pp.
2175
2186
.
7.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays and Pin-Endwall Fillet
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
926
932
.
8.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2004, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1731
1743
.
9.
Park
,
J. S.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Chyu
,
M. K.
, 2008, “
Heat Transfer on Rotating Channel With Various Height of Pin Fins
,” ASME Turbo Expo, Paper No. GT2008-50783.
10.
Chang
,
S. W.
,
Yang
,
T. L.
,
Huang
,
C. C.
, and
Chiang
,
K. F.
, 2008, “
Endwall Heat Transfer and Pressure Drop in Rectangular Channels With Attached and Detached Circular Pin–Fin Array
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5247
5259
.
11.
Sara
,
O. N.
, 2003, “
Performance Analysis of Rectangular Ducts With Staggered Square Pin Fins
,”
Energy Convers. Manage.
,
44
, pp.
1787
1803
.
12.
Dogrouz
,
M. B.
,
Urdaneta
,
M.
, and
Ortega
,
A.
, 2005, “
Experiments and Modeling of the Hydraulic Resistance and Heat Transfer of In-Line Square Pin Fin Heat Sink With Top By-Pass Flow
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5058
5071
.
13.
Lafleur
,
R. S.
, 2008, “
Method for Cooling a Wall Within a Gas Turbine Engine
,” United Technologies Corporation, EP 1 617 043 B1.
14.
Chyu
,
M. K.
,
Siw
,
S. C.
,
Karaivanov
,
V. G.
,
Slaughter
,
W. S.
, and
Alvin
,
M. A.
, 2009, “
Aerothermal Challenges in Syngas, Hydrogen-Fired and Oxyfuel Turbines—Part II: Effects of Internal Heat Transfer
,”
ASME J. Thermal Sci. Eng. Appl.
,
1
(1), p.
011003
.
15.
Steuber
,
G. D.
, and
Metzger
,
D. E.
, 1986, “
Heat Transfer and Pressure Loss Performance for Families of Partial Length Pin Fin Arrays in High Aspect Ratio Rectangular Ducts
,”
8th International Heat Transfer Conference
, Vol.
6
, pp.
2915
2920
.
16.
Arora
,
S. C.
, and
Abdel-Messeh
,
W.
, 1989, “
Characteristics of Partial Length Circular Pin Fins as Heat Transfer Augmentators for Airfoil Internal Cooling Passages
,” ASME Paper No. 89-GT-87.
17.
Metzger
,
D. E.
, and
Larson
,
D. E.
, 1986, “
Use of Melting Point Surface Coatings for Local Convection Heat Transfer Measurements in Rectangular Channel Flows With 90-Deg Turns
,”
ASME J. Heat Transfer
,
109
, pp.
48
54
.
18.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1998, “
Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystal Technique
,”
Exp. Therm. Fluid Sci.
,
18
, pp.
142
149
.
19.
Chen
,
S. P.
,
Li
,
P. W.
, and
Chyu
,
M. K.
, 2006, “
Heat Transfer in a Airfoil Trailing Edge Configuration With Shaped Pedestals Mounted Internal Cooling Channel and Pressure Side Cutback
,” ASME Turbo Expo, Paper No. GT2006-91019.
20.
Chyu
,
M. K.
,
Oluyede
,
E. O.
, and
Moon
,
H.-K.
, 2007, “
Heat Transfer on Convective Surfaces With Pin-Fins Mounted in Inclined Angles
,” ASME Turbo Expo, Paper No. GT2007-28138.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
22.
Chi
,
X.
,
Shih
,
T. I.-P.
,
Bryden
,
K. M.
,
Siw
,
S.
,
Chyu
,
M. K.
,
Ames
,
R.
, and
Dennis
,
R. A.
, 2011, “
Effects of Pin-Fin Height on Flow and Heat Transfer in a Rectangular Duct
,” ASME Turbo Expo, Paper No. GT2011-46014.
You do not currently have access to this content.