The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke-wheel wake generator) on the modeled rotor blade is studied using the pressure sensitive paint (PSP) mass-transfer analogy method. Emphasis of the current study is on the midspan region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film-cooling holes. The blade also has radial shower-head leading edge film-cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side and 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film-cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.

References

References
1.
Chyu
,
M. K.
,
Siw
,
S. C.
,
Karaivanov
,
V. G.
,
Slaughter
,
W. S.
, and
Alvin
,
M. A.
, 2009, “
Aerothermal Challenges in Syngas, Hydrogen-Fired, and Oxyfuel Turbines—PART II: Effects of Internal Heat Transfer
,”
J. Thermal. Sci. Eng. Appl.
,
1
(
1
), p.
011003
.
2.
Bradley
,
T.
, and
Fadok
,
J.
, 2009, “
Advanced Hydrogen Turbine Development Update
,”
Proceedings of Turbo Expo 2009
,
Orlando, FL
, Paper No. GT2009-59105.
3.
Mayle
,
R.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
4.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
, 1990, “
A Theory for Wake-Induced Transition
,”
ASME J. Turbomach.
,
112
(
2
), pp.
188
195
.
5.
Han
,
J. C.
,
Zhang
,
L.
, and
Ou
,
S.
, 1993, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
904
911
.
6.
Zhang
,
L.
, and
Han
,
J.-C.
, 1995, “
Combined Effect of Free-Stream Turbulence and Unsteady Wake on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
296
302
.
7.
Mehendale
,
A. B.
,
Han
,
J.-C.
,
Ou
,
S.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II–Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
,
116
(
4
), pp.
730
737
.
8.
Guenette
,
G.
,
Epstein
,
A.
,
Giles
,
M.
,
Haimes
,
R.
, and
Norton
,
R.
, 1989, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.
9.
Doorly
,
D.
, and
Oldfield
,
M.
, 1985, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
998
1006
.
10.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
S.
, 1997, “
Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
119
(
2
), pp.
292
301
.
11.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2005, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
12.
Bijak-Bartosik
,
E.
, and
Elsner
,
W.
, 2009, “
Investigation of Wake Transport in a Turbine Blade Channel and Its Effect on the Boundary Layer Development
,”
ASME International Gas Turbine Conference and Exhibit
,
Orlando, FL
, June 8–12, Paper No. GT2009-59123.
13.
Sinha
,
A. K.
,
Bogard
,
D.
, and
Crawford
,
M.
, 1991, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
14.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
, 1997, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
15.
Goldstein
,
R. J.
, and
Jin
,
P.
, 2001, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
16.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
San Francisco, CA.
17.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2001, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.
18.
Jones
,
T.
, 1999, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
19.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1977, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
20.
Du
,
H.
,
Ekkad
,
S.
, and
Han
,
J. C.
, 1999, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Detailed Film Cooling Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
121
(
3
), pp.
448
455
.
21.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J.-C.
, 2000, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
2
), pp.
340
347
.
22.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
, 2001, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
123
(
2
), pp.
214
221
.
23.
Nicoll
,
W.
, and
Whitelaw
,
J.
, 1967, “
The Effectiveness of the Uniform Density, Two-Dimensional Wall Jet (Two-Dimensional Wall Jet Effectiveness Measurements and Calculation Procedures for Injection Conditions)
,”
Int. J. Heat Mass Transfer
,
10
, pp.
623
639
.
24.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J.-C.
, 2008, “
Full-Coverage Film Cooling for a Turbine Blade With Axial-Shaped Holes
,”
J. Thermophys. Heat Transfer
,
22
(
1
), pp.
50
61
.
25.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J.-C.
, 2009, “
Film-Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011019
.
26.
Rallabandi
,
A. P.
,
Grizzle
,
J.
, and
Han
,
J. C.
, 2011, “
Effect of Upstream Step on Flat Plate Film Cooling Effectiveness Using PSP
,”
ASME J. Turbomach.
,
133
, p.
041024
.
27.
Narzary
,
D. P.
,
Liu
,
K.-C.
, and
Han
,
J. C.
, 2009. “
Influence of Coolant Density on Turbine Blade Platform Film Cooling
,”
2009 Proceedings of the ASME IGTI Turbo-Expo
,
Orlando, FL
, Paper No. GT2009-59342, pp.
599
609
.
28.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobbe
,
T.
, 2009, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
Proceedings of Turbo Expo 2009
,
Orlando, FL
, Paper No. GT2009-60306.
29.
Ou
,
S.
,
Han
,
J.-C.
,
Mehendale
,
A. B.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I–Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
,
116
(
4
), pp.
721
729
.
30.
Kline
,
S.
, and
McClintock
,
F.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.