Plasma deposited amorphous fluorocarbon polymers find use in biopassivation, and as low-friction coatings, adhesion promoters, and interlayer dielectrics. Here, we exploit their ease of deposition into ultrathin layers (<50 nm thick) to explore their potential as thermal storage elements. We design and fabricate a microcalorimeter for measuring the heat capacity of thin fluorocarbons. Conventional thin film calorimetry assumes adiabatic conditions that lead to large errors as film thickness decreases. We propose a new data analysis procedure that incorporates a one-dimensional solution of the transient heat diffusion equation to account for conduction losses. The data for films with thicknesses in the range 12–27 nm reveal a lowering of the melting point and an increase in the volumetric heat capacity with decreasing thickness. We attribute this to change in the carbon to fluorine ratio in the films’ composition. The volumetric heat capacity approximately doubles at room temperature as the film thickness decreases from 27 nm to 12 nm.

References

References
1.
Limb
,
S. J.
,
Gleason
,
K. K.
,
Edell
,
D. J.
, and
Gleason
,
E. F.
, 1997, “
Flexible Fluorocarbon Wire Coatings by Pulsed Plasma Enhanced Chemical Vapor Deposition
,”
J. Vac. Sci. Technol. A
,
15
(
4
), pp.
1814
1818
.
2.
Yasuda
,
H.
, and
Gazicki
,
M.
, 1982, “
Biomedical Applications of Plasma Polymerization and Plasma Treatment of Polymer Surfaces
,”
Biomaterials
,
3
(
2
), pp.
68
77
.
3.
Momose
,
Y.
,
Takada
,
T.
, and
Okazaki
,
S.
, “
Polymeric Materials Science and Engineering. CF4 and C2F6 Plasma Fluorination of Hydrocarbon and Fluorocarbon Polymers
,”
Proceedings of the ACS Division of Polymeric Materials, Polymeric Materials Science and Engineering
, p.
276
.
4.
Pittman
,
A. G.
, 1972, “
Surface Properties of Fluorocarbon Polymers
,”
Fluoropolymers
,
L. A.
Wall
, ed.,
John Wiley & Sons, Inc.
,
New York
, p.
419
.
5.
Horie
,
M.
,
Tamura
,
T.
,
Ohgaki
,
M.
,
Yoshida
,
H.
,
Kobayashi
,
T.
,
Kisaka
,
Y.
, and
Kobayashi
,
Y.
, 1995, “
Adhesion Between Te-Based Alloy Films and Fluorocarbon Sublayers During the Ablative Hole Opening Process
,”
J. Appl. Phys.
,
77
(
2
), pp.
865
872
.
6.
Endo
,
K.
,
Tatsumi
,
T.
, 1995, “
Fluorinated Amorphous Carbon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition for Low Dielectric Constant Interlayer Dielectrics
,”
J. Appl. Phys.
,
78
(
2
), pp.
1370
1372
.
7.
Theil
,
J.
, 1999, “
Fluorinated Amorphous Carbon Films for Low Permittivity Interlevel Dielectrics
,”
J. Vac. Sci. Technol. B
,
17
(
6
), pp.
2397
2410
.
8.
Ghossoub
,
M.
,
Lee
,
J.-H.
,
Baris
,
O.
,
Cahill
,
D.
, and
Sinha
,
S.
, 2010, “
Percolation of Thermal Conductivity in Amorphous Fluorocarbons
,”
Phys. Rev. B
,
82
(
19
), p.
195441
.
9.
Zalba
,
B.
,
Main
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
, 2003, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
, pp.
251
283
.
10.
Wen
,
J.
, 2007, “
Heat Capacities of Polymers
,”
Physical Properties of Polymers Handbook
,
J. E.
Mark
, ed.,
Springer
,
New York
.
11.
Chu
,
B.
,
Zhou
,
X.
,
Ren
,
K.
,
Neese
,
B.
,
Lin
,
M.
,
Wang
,
Q.
,
Bauer
,
F.
, and
Zhang
,
Q. M.
, 2006, “
A Dielectric Polymer With High Electric Energy Density and Fast Discharge Speed
,”
Science
,
313
(
5785
), pp.
334
336
.
12.
Fujieda
,
S.
,
Hasegawa
,
Y.
,
Fujita
,
A.
, and
Fukamichi
,
K.
, 2004, “
Thermal Transport Properties of Magnetic Refrigerants La(FexSi1−x)13 and Their Hydrides, and Gd5Si2Ge2 and MnAs
,”
J. Appl. Phys.
,
95
(
5
), pp.
2429
2431
.
13.
Wada
,
H.
, and
Tanabe
,
Y.
, 2001, “
Giant Magnetocaloric Effect of MnAs1−xSbx
,”
Appl. Phys. Lett.
,
79
(
20
), pp.
3302
3304
.
14.
Dincer
,
I.
,
Dost
,
S.
, and
Li
,
X.
, 1997, “
Performance Analyses of Sensible Heat Storage Systems for Thermal Applications
,”
Int. J. Energy Res.
,
21
(
12
), pp.
1157
1171
.
15.
Faninger
,
G.
, 2007, “
Sensible Heat Storage
,”
Sustainable Solar Housing-Vol. 2 Exemplary Buildings and Technologies
,
R.
Hastings
and
M.
Wall
, eds.,
Earthscan Publications Ltd.
, London, p.
215
.
16.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Thermal Management of Transient Power Spikes in Electronics—Phase Change Energy Storage or Copper Heat Sinks?
,”
J. Electron. Packag.
,
126
(
3
), pp.
308
316
.
17.
Tan
,
F. L.
, and
Tso
,
C. P.
, 2004, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
159
169
.
18.
Sharma
,
A.
,
Tyagi
,
V.
,
Chen
,
C.
, and
Buddhi
,
D.
, 2009, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
19.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
, 2004, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9-10
), pp.
1597
1615
.
20.
Yu
,
X.
,
Lee
,
Y. J.
,
Furstenberg
,
R.
,
White
,
J. O.
, and
Braun
,
P. V.
, 2007, “
Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals
,”
Adv. Mater.
,
19
(
13
), pp.
1689
1692
.
21.
Efremov
,
M. Y.
,
Olson
,
E. A.
,
Zhang
,
M.
,
Lai
,
S. L.
,
Schiettekatte
,
F.
,
Zhang
,
Z. S.
,
Allen
,
L. H.
, 2004, “
Thin-Film Differential Scanning Nanocalorimetry: Heat Capacity Analysis
,”
Thermochim. Acta
,
412
(
1-2
), pp.
13
23
.
22.
Schick
,
C.
, 2010, “
Glass Transition Under Confinement—What Can Be Learned From Calorimetry
,”
Eur. Phys. J. Spec. Top.
,
189
(
1
), pp.
3
36
.
23.
Koh
,
Y. P.
,
McKenna
,
G. B.
, and
Simon
,
S. L.
, 2006, “
Calorimetric Glass Transition Temperature and Absolute Heat Capacity of Polystyrene Ultrathin Films
,”
J. Polym. Sci., Part B: Polym. Phys.
,
44
(
24
), pp.
3518
3527
.
24.
Denlinger
,
D. W.
,
Abarra
,
E. N.
,
Allen
,
K.
,
Rooney
,
P. W.
,
Messer
,
M. T.
,
Watson
,
S. K.
, and
Hellman
,
F.
, 1994, “
Thin Film Microcalorimeter for Heat Capacity Measurements From 1.5 to 800 K
,”
Rev. Sci. Instrum.
,
65
(
4
), pp.
946
959
.
25.
Efremov
,
M. Y.
,
Olson
,
E. A.
,
Zhang
,
M.
,
Schiettekatte
,
F. o.
,
Zhang
,
Z.
, and
Allen
,
L. H.
, 2004, “
Ultrasensitive, Fast, Thin-Film Differential Scanning Calorimeter
,”
Rev. Sci. Instrum.
,
75
(
1
), pp.
179
191
.
26.
Efremov
,
M. Y.
,
Olson
,
E. A.
,
Zhang
,
M.
,
Zhang
,
Z.
, and
Allen
,
L. H.
, 2003, “
Glass Transition in Ultrathin Polymer Films: Calorimetric Study
,”
Phys. Rev. Lett.
,
91
(
8
),
085703
.
27.
Lees
,
L.
, and
Liu
,
C. Y.
, 1962, “
Kinetic-Theory Description of Conductive Heat Transfer from a Fine Wire
.”
Phys. Fluids
,
5
(
10
), pp.
1137
1148
.
28.
Hickernell
,
T. S.
,
Fliegel
,
F. M.
, and
Hickernell
,
F. S.
, 1990, “
The Elastic Properties of Thin-Film Silicon Nitride
,”
Proc.-IEEE Ultrason. Symp.
,
1
, pp.
445
448
.
29.
Jain
,
A.
, and
Goodson
,
K. E.
, 2008, “
Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3 Omega Method
,”
ASME J. Heat Transfer
,
130
(
10
),
102402
.
30.
Groner
,
M. D.
,
Fabreguette
,
F. H.
,
Elam
,
J. W.
, and
George
,
S. M.
, 2004, “
Low-Temperature Al2O3 Atomic Layer Deposition
,”
Chem. Mater.
,
16
(
4
), pp.
639
645
.
31.
Costescu
,
R. M.
,
Cahill
,
D. G.
,
Fabreguette
,
F. H.
,
Sechrist
,
Z. A.
, and
George
,
S. M.
, 2004, “
Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates
,”
Science
,
303
(
5660
), pp.
989
990
.
32.
Haynes
,
W. M. M.
, ed.,
CRC Handbook of Chemistry and Physics
,
91st ed.
, (Internet Version 2011),
CRC Press/Taylor & Francis
,
Boca Raton, FL.
33.
Zink
,
B. L.
, and
Hellman
,
F.
, 2004, “
Specific Heat and Thermal Conductivity of Low-Stress Amorphous Si-N Membranes
,”
Solid State Commun.
,
129
(
3
), pp.
199
204
.
34.
Easwarakhanthan
,
T.
,
Beyssen
,
D.
,
Le Brizoual
,
L.
, and
Bougdira
,
J.
, 2006, “
Spectroellipsometric Analysis of CHF3 Plasma-Polymerized Fluorocarbon Films
,”
J. Vac. Sci. Technol. A
,
24
(
4
), pp.
1036
1043
.
35.
Olson
,
E. A.
,
Efremov
,
M. Y.
,
Zhang
,
M.
,
Zhang
,
Z.
, and
Allen
,
L. H.
, 2003, “
The Design and Operation of a MEMS Differential Scanning Nanocalorimeter for High-Speed Heat Capacity Measurements of Ultrathin Films
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
355
364
.
36.
Zhang
,
S.
,
Rabin
,
Y.
,
Yizhang
,
Y.
, and
Asheghi
,
M.
, 2007, “
Nanoscale Calorimetry Using a Suspended Bridge Configuration
,”
J. Microelectromech. Syst.
,
16
(
4
), pp.
861
871
.
37.
Wunderlich
,
B.
, 2005,
Thermal Analysis of Polymeric Materials
,
Springer-Verlag
,
Berlin
.
38.
Wang
,
Y.
,
Rafailovich
,
M.
,
Sokolov
,
J.
,
Gersappe
,
D.
,
Araki
,
T.
,
Zou
,
Y.
,
Kilcoyne
,
A.
,
Ade
,
H.
,
Marom
,
G.
, and
Lustiger
,
A.
, 2006, “
Substrate Effect on the Melting Temperature of Thin Polyethylene Films
,”
Phys. Rev. Lett.
,
96
(
2
), p.
028303
.
39.
Kim
,
J. H.
,
Jang
,
J.
, and
Zin
,
W.-C.
, 2001, “
Thickness Dependence of the Melting Temperature of Thin Polymer Films
,”
Macromol. Rapid Commun.
,
22
(
6
), pp.
386
389
.
40.
O'Hagan
,
D.
, 2008, “
Understanding Organofluorine Chemistry. An Introduction to the C-F Bond
,”
Chem. Soc. Rev.
,
37
(
2
), pp.
308
319
.
41.
Kittel
,
C.
, and
Kroemer
,
H.
, 1980,
Thermal Physics
,
Freeman, San Francisco
.
42.
Barker
,
J. R. E.
, 1967, “
Grüneisen Numbers for Polymeric Solids
,”
J. Appl. Phys.
,
38
(
11
), pp.
4234
4242
.
43.
Curro
,
J. G.
, 1973, “
Calculation of Grüneisen Parameters of Polymers
,”
J. Chem. Phys.
,
58
(
1
), pp.
374
380
.
44.
Wada
,
Y.
,
Itani
,
A.
,
Nishi
,
T.
, and
Nagai
,
S.
, 1969, “
Grüneisen Constant and Thermal Properties of Crystalline and Glassy Polymers
,”
J. Polym. Sci., Part A-2
,
7
(
1
), pp.
201
208
.
45.
Warfield
,
R. W.
, 1974, “
The Grüneisen Constant of Polymers
,”
Die Makromolekulare Chemie
,
175
(
11
), pp.
3285
3297
.
You do not currently have access to this content.