In this paper, we study the steady state heat transfer process within a spatial domain of the transporting medium whose length is of the same order as the distance traveled by thermal waves. In this study, the thermal conductivity is defined as a function of a spatial variable. This is achieved by analyzing an effective thermal diffusivity that is used to match the transient temperature behavior in the case of heat wave propagation by the result obtained from the Fourier theory. Then, combining the defined size-dependent thermal conductivity with Fourier’s law allows us to study the behavior of the heat flux at nanoscale and predict that a decrease of the size of the transporting medium leads to an increase of the heat transfer coefficient which reaches its finite maximal value, contrary to the infinite value predicted by the classical theory. The upper limit value of the heat transfer coefficient is proportional to the ratio of the bulk value of the thermal conductivity to the characteristic length of thermal waves in the transporting medium.

References

1.
Shakouri
,
A.
, 2006, “
Nanoscale Thermal Transport and Microrefrigerators on a Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1613
1638
.
2.
Cahill
,
D.
,
Ford
,
W.
,
Goodson
,
K.
,
Mahan
,
G.
,
Majumdar
,
A.
,
Maris
,
H.
,
Merlin
,
R.
, and
Phillpot
,
S.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
, p.
793
.
3.
Tang
,
D. W.
, and
Araki
,
N.
, 1996, “
The Wave Characteristics of Thermal Conduction in Metallic Films Irradiated by Ultra-Short Laser Pulses
,”
J. Phys. D: Appl. Phys.
,
29
(
10
), p.
2527
.
4.
Cattaneo
,
C.
, 1958, “
Sur Une Forme de Lequation de la Chaleur Eliminant le Paradoxe Dune Propagation Instantanee
,”
C. R. Acad. Sci. Paris
,
247
, pp.
431
433
.
5.
Vernotte
,
P.
, 1958, “
La Veritable Equation de la Chaleur
,”
C. R. Acad. Sci.
,
247
, pp.
2103
2105
.
6.
Joseph
,
D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
,
61
(
1
), pp.
41
73
.
7.
Eesley
,
G.
, 1986, “
Generation of Nonequilibrium Electron and Lattice Temperatures in Copper by Picosecond Laser Pulses
,”
Phys. Rev. B
,
33
(
4
), pp.
2144
2151
.
8.
Fann
,
W.
,
Storz
,
R.
,
Tom
,
H.
, and
Bokor
,
J.
, 1992, “
Electron Thermalization in Gold
,”
Phys. Rev. B
,
46
(
20
), pp.
13592
13595
.
9.
Sun
,
C.
,
Vallee
,
F.
,
Acioli
,
L.
,
Ippen
,
E.
, and
Fujimoto
,
J.
, 1993, “
Femtosecond Investigation of Electron Thermalization in Gold
,”
Phys. Rev. B
,
48
(
16
), pp.
12365
12368
.
10.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layer Metals I. Analysis
,”
Int. J. Heat Mass Transfer
,
37
, pp.
2789
2797
.
11.
Tzou
,
D.
,
Beraun
,
J.
, and
Chen
,
J.
, 2002, “
Ultrafast Deformation in Femtosecond Laser Heating
,”
ASME Trans. J. Heat Transfer
,
124
(
2
), pp.
284
292
.
12.
Tzou
,
D. Y.
, 1997,
Macro to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
New York
.
13.
Chen
,
J.
, and
Beraun
,
J.
, 2001, “
Numerical Study of Ultrashort Laser Pulse Interactions With Metal Films
,”
Numer. Heat Transfer, Part A
,
40
(
1
), pp.
1
20
.
14.
Poletkin
,
K. V.
,
Gurzadyan
,
G. G.
,
Shang
,
J.
, and
Kulish
,
V.
, 2011, “
Ultrafast Heat Transfer on Nanoscale in Thin Gold Films
,”
Appl. Phys. B
(in press).
15.
Liu
,
W.
, and
Asheghi
,
M.
, 2006, “
Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
,”
ASME Trans. J. Heat Transfer
,
128
, p.
75
.
16.
Liang
,
L.
, and
Li
,
B.
, 2006, “
Size-Dependent Thermal Conductivity of Nanoscale Semiconducting Systems
,”
Phys. Rev. B
,
73
(
15
), p.
153303
.
17.
Lee
,
S.
, and
Cahill
,
D.
, 1997, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
, p.
2590
.
18.
Asheghi
,
M.
,
Leung
,
Y.
,
Wong
,
S.
, and
Goodson
,
K.
, 1997, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
,
71
, p.
1798
.
19.
Kulish
,
V. V.
, and
Novozhilov
,
B. V.
, 2003, “
The Relationship Between the Local Temperature and the Local Heat Flux Within a One-Dimensional Semi-Infinite Domain of Heat Wave Propagation
,”
Math. Probl. Eng.
,
4
, pp.
173
179
.
20.
Kulish
,
V. V.
,
Lage
,
L. J.
,
Komarov
,
L. P.
, and
Raad
,
P. E.
, 2001, “
A Fractional-Diffusion Theory for Calculating Thermal Properties of Thin Films From Surface Transient Thermoreflectance Measurements
,”
ASME Trans. J. Heat Transfer
,
123
, pp.
1133
1138
.
21.
Ju
,
Y.
, and
Goodson
,
K.
, 1999, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
, p.
3005
.
22.
Liu
,
W.
, and
Asheghi
,
M.
, 2004, “
Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers
,”
Appl. Phys. Lett.
,
84
, p.
3819
.
23.
Ju
,
Y.
, 2005, “
Phonon Heat Transport in Silicon Nanostructures
,”
Appl. Phys. Lett.
,
87
, p.
153106
.
24.
Chen
,
G.
, 2000, “
Phonon Heat Conduction in Nanostructures
,”
Int. J. Therm. Sci.
,
39
(
4
), pp.
471
480
.
You do not currently have access to this content.