An experimental investigation of an oscillating heat pipe (OHP) with a superhydrophobic inner surface coated with a superhydrophobic self-assembled monolayer (SAM) of n-octadecyl mercaptan was conducted. The experimental results show that the oscillating motion in an OHP with a superhydrophobic surface can be generated and the OHP can function well. This is very different from the conventional wicked heat pipe, which cannot function if the inner surface is hydrophobic. The functionality of a superhydrophobic OHP is not sensitive to the wetting condition of the inner surface of the OHP. The investigation results in a better understating of heat transfer mechanism occurring in an OHP.

References

References
1.
Wilson
,
C.
,
Borgmeyer
,
B.
, and
Winholtz
,
R. A.
, 2008, “
Visual Observation of Oscillating Heat Pipes Using Neutron Radiography
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
366
372
.
2.
Khandekar
,
S.
,
Charoensawan
,
P.
, and
Groll
,
M.
, 2003, “
Closed Loop Pulsating Heat Pipes Part B: Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
366
372
.
3.
Ma
,
H. B.
,
Borgmeyer
,
B.
, and
Cheng
,
P.
, 2008, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081501
.
4.
Rittidech
,
S.
,
Terdtoon
,
P.
, and
Murakami
,
M.
, 2003, “
Correlation to Predict Heat Transfer Characteristics of a Closed-End Oscillating Heat Pipe at Normal Operating Condition
,”
Appl. Therm. Eng.
,
23
(
4
), pp.
497
510
.
5.
Qu
,
W.
, and
Ma
,
H.
, 2007, “
Theoretical Analysis of Startup of a Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2309
2316
.
6.
Charoensawan
,
P.
, and
Terdtoon
,
P.
, 2008, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
460
466
.
7.
Ji
,
Y.
,
Wilson
,
C.
,
Chen
,
H.-H.
, and
Ma
,
H.
, 2011, “
Particle Shape Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
296
.
8.
Ji
,
Y.
,
Ma
,
H.
,
Su
,
F.
, and
Wang
,
G.
, 2011, “
Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
724
727
.
9.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
, 2006, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.
10.
Lin
,
Y.
,
Kang
,
S.
, and
Chen
,
H.
, 2008, “
Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1312
1317
.
11.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
, 2010, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
366
372
.
12.
Akachi
,
H.
, 1990, “
Structure of a Heat Pipe
,” U. S. Patent No. 4921041.
13.
Rose
,
J. W.
, 2002, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
2
), pp.
115
128
.
14.
Vemuri
,
S.
, and
Kim
,
K. J.
, 2006, “
An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
649
657
.
15.
Lan
,
Z.
,
Ma
,
X.
, and
Zhou
,
X.
, 2009, “
Theoretical Study of Dropwise Condensation Heat Transfer: Effect of the Liquid-Solid Surface Free Energy Difference
,”
J. Enhanced Heat Transfer
,
16
(
1
), pp.
61
71
.
16.
Mei
,
M.
,
Yu
,
B.
,
Zou
,
M.
, and
Luo
,
L.
, 2011, “
A Numerical Study on Growth Mechanism of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2004
2013
.
17.
Sikarwar
,
B. S.
,
Battoo
,
N. K.
,
Khandekar
,
S.
, and
Muralidhar
,
K.
, 2011, “
Dropwise Condensation Underneath Chemically Textured Surfaces: Simulation and Experiments
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021501
.
18.
Qian
,
B.
, and
Shen
,
Z.
, 2006, “
Super-Hydrophobic CuO Nanoflowers by Controlled Surface Oxidation on Copper
,”
Wuji Cailiao Xuebao/J. Inorg. Mater.
,
21
(
3
), pp.
747
752
.
19.
Peterson
,
G. P.
, 1994,
An Introduction to Heat Pipes
,
Wiley
,
New York
, p.
356
.
You do not currently have access to this content.