For understanding and accurately modeling combustion, the important questions are what species are present in the flame, and the spatial distribution and temperature of these species. Traditional optical methods used only the electromagnetic waves in the wavelength region from the ultraviolet region up to the infrared. Terahertz time-domain spectroscopy technique can be used for the combustion research as a novel tool. However, for some sooty combustion environments, the strong absorption, spectral interference from soot scattering, and fluorescence from large molecules must be considered. The optical properties of soot in the terahertz domain are the main basic data for terahertz application. In this paper, the terahertz time-domain spectroscopy technique was used to study the optical properties of flame soot within 0.2–1.6 THz. The complex refractive indices of the soot were deduced by the fixed-point iteration method. In order to validate the results, the complex refractive indices of the soot from the four different fuel flames were deduced. It was found that the complex refractive indices in the terahertz domain of the soot from the different fuel flames are very close to each other. The comparisons of complex refractive indices between the visible–IR domain and the terahertz domain indicate that the value of absorption index in terahertz domain is smaller than in IR domain, which implies that the terahertz wave will penetrate the sooty flame with smaller absorption than the IR rays. The results can provide the basic optical data of flame soot for the application of terahertz time-domain spectroscopy technique in the optical combustion diagnostics and extend the optical combustion diagnostics application area.

References

1.
Nygren
,
J.
,
Engstrom
,
J.
,
Walewski
,
J.
,
Kaminski
,
C. F.
, and
Alden
,
M.
, 2001, “
Applications and Evaluation of Two-Line Atomic LIF Thermometry in Sooting Combustion Environments
,”
Meas. Sci. Technol.
,
12
, pp.
1294
1303
.
2.
Kruger
,
V.
,
Wahl
,
C.
,
Hadef
,
R.
,
Geigle
,
K. P.
,
Stricker
,
W.
, and
Aigner
,
M.
, 2005, “
Comparison of Laser-Induced Incandescence Method With Scanning Mobility Particle Sizer Technique: The Influence of Probe Sampling and Laser Heating on Soot Particle Size Distribution
,”
Meas. Sci. Technol.
,
16
, pp.
1477
1486
.
3.
Anderson
,
T. N.
,
Lucht
,
R. P.
,
Meyer
,
T. R.
,
Roy
,
S.
, and
Gord
,
J. R.
, 2005, “
Diode-Laser-Based Ultraviolet-Absorption Sensor for High-Speed Detection of the Hydroxyl Radical
,”
Combust. Flame
,
30
(
11
), pp.
1321
1323
.
4.
Bradley
,
D.
,
Lawes
,
M.
,
Scott
,
M. J.
, and
Usta
,
N.
, 2001, “
The Structure of Coal-Air-CH4 Laminar Flames in a Low-Pressure Burner: CARS Measurements and Modeling Studies
,”
Combust. Flame
,
124
(
1
), pp.
82
105
.
5.
Hu
,
B. B.
, and
Muss
,
M. C.
, 1995, “
Imaging With Terahertz Waves
,”
Opt. Lett.
,
20
(
16
), pp.
1716
1718
.
6.
Johnson
,
J. L.
,
Dorney
,
T. D.
, and
Mittleman
,
D. M.
, 2001, “
Enhanced Depth Resolution in Terahertz Imaging Using Phase-Shift Interferometry
,”
Appl. Phys. Lett.
,
78
, pp.
835
846
.
7.
Ferguson
,
B.
,
Wang
,
S.
,
Gray
,
D.
,
Abbott
,
D.
, and
Zhang
,
X. C.
, 2002, “
Towards Functional 3D T-Ray Imaging
,”
Phys. Med. Biol.
,
47
, pp.
3735
3742
.
8.
Ciesla
,
C. M.
,
Arnone
,
D. D.
,
Corchia
,
A.
,
Crawley
,
D.
,
Longbottom
,
C.
,
Linfield
,
E. H.
, and
Pepper
,
M.
, 2000, “
Biomedical Applications of Terahertz Pulse Imaging
,”
Proc. SPIE
,
3934
, pp.
73
81
.
9.
Woodward
,
R. H.
,
Cole
,
B.
,
Wallace
,
V. P.
,
Pye
,
R. J.
,
Arnone
,
D. D.
,
Linfield
,
E. H.
, and
Pepper
,
M.
, 2002, “
Terahertz Pulse Imaging in Reflection Geometry of Human Skin Cancer and Skin Tissue
,”
Phys. Med. Biol.
,
47
, pp.
3853
3863
.
10.
Bhattacharjee
,
Y.
, 2005, “
New Techniques Aim to Thwart Terrorists
,”
Science
,
309
, p.
1810
.
11.
Zhong
,
H.
,
Xu
,
J.
,
Xie
,
X.
,
Yuan
,
T.
,
Reightler
,
R.
,
Madaras
,
E.
, and
Zhang
,
X.
, 2005, “
Nondestructive Defect Identification With Terahertz Time-of-Flight Tomography
,”
IEEE Sens. J.
,
5
(
2
), pp.
203
208
.
12.
Fischer
,
B. M.
,
Walther
,
M.
, and
Jepsen
,
P. U.
, 2002, “
Far-Infrared Vibrational Modes of DNA Components Studied by Terahertz Time-Domain Spectroscopy
,”
Phys. Med. Biol.
,
47
, pp.
3807
3814
.
13.
Mittleman
,
D. M.
,
Jacobsen
,
R. H.
,
Neelamani
,
R.
,
Baraniuk
,
R. G.
, and
Nuss
,
M. C.
, 1998, “
Gas Sensing Using Terahertz Time-Domain Spectroscopy
,”
Appl. Phys. B
,
67
, pp.
379
390
.
14.
Bassi
,
J.
,
Naftaly
,
M.
,
Miles
,
B.
, and
Zhang
,
Y.
, 2005, “
The Investigation of Sooty Flames Using Terahertz Waves
,”
Flow Meas. Instrum.
,
16
, pp.
341
345
.
15.
Cheville
,
R. A.
, and
Grischkowsky
,
D.
, 1995, “
Far-Infrared Terahertz Time-Domain Spectroscopy of Flames
,”
Opt. Lett.
,
20
(
15
), pp.
1646
1648
.
16.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
San Diego
.
17.
Saito
,
K.
,
Gordon
,
A. S.
,
Williams
,
F. A.
, and
Stickle
,
W. F.
, 1991, “
A Study of the Early History of Soot Formation in Various Hydrocarbon Diffusion Flames
,”
Combust. Sci. Technol.
,
80
, pp.
103
119
.
18.
Yan
,
Z.
,
Hou
,
D.
,
Cao
,
B.
,
Zhang
,
G.
, and
Zhou
,
Z.
, 2008, “
Terahertz Spectroscopic Investigation of Imidacloprid
,”
Spectrosc. Spectral Anal.
,
28
(
8
), pp.
1718
1721
.
19.
Yan
,
Z. G.
,
Hou
,
D. B.
,
Cao
,
B. H.
,
Zhang
,
G. X.
, and
Zhou
,
Z. K.
, 2008, “
Terahertz Spectroscopic Investigation of Riboflavin and Nicotinic Acid
,”
J. Infrared Millim. Waves
,
27
(
5
), pp.
326
329
.
20.
Withayachumnankul
,
W.
,
Ferguson
,
B.
,
Rainsford
,
T.
,
Mickan
,
S. P.
, and
Abbott
,
D.
, 2005, “
Material Parameter Extraction for Terahertz Time-Domain Spectroscopy Using Fixed-Point Iteration
,”
Photon. Mater. Dev. Appl.
,
5840
, pp.
221
231
.
21.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
, 1990, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London, Ser. A
,
430
, pp.
577
591
.
You do not currently have access to this content.