Paraffin phase change material (PCM) is enhanced with suspended graphite nanofibers at high loading levels. The loading levels reach in excess of 10% by weight. The thermal effects of the nanofiber loading level, the PCM module design, and the applied power density on the transient thermal response of the system are examined. A strong effect of nanofiber loading level on thermal performance is found, including a suppression of Rayleigh-Benard convection currents at high loading levels. Increases in nanofiber loading level also result in lowered heating rates and greater thermal control of the heated base. Increases in power density are found to result in higher heating rates, and increases in mass lead to lower operating temperatures. The design of the module is found to have a strong effect on thermal performance.

References

References
1.
Pal
,
D.
, and
Joshi
,
Y.
, 1996, “
Application of Phase Change Materials for Passive Thermal Control of Plastic Quad Flat Packages: A Computational Study
,”
Numer. Heat Transfer, Part A
,
30
, pp.
19
34
.
2.
Pal
,
D.
, and
Joshi
,
Y. K.
, 1997, “
Application of Phase Change Materials to Thermal Control of Electronic Modules: A Computational Study
,”
ASME J. Electron. Packag.
,
119
, pp.
40
50
.
3.
Hodes
,
M.
,
Weinstein
,
R. D.
,
Pence
,
S. J.
,
Piccini
,
J. M.
,
Manzione
,
L.
, and
Chen
,
C.
, 2002, “
Transient Thermal Management of a Handset Using Phase Change Material (PCM)
,”
ASME J. Electron. Packag.
,
124
, pp.
419
426
.
4.
Setoh
,
G.
,
Tan
,
F. L.
, and
Fok
,
S. C.
, 2010, “
Experimental Studies on the Use of a Phase Change Material for Cooling Mobile Phones
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
1403
1410
.
5.
Egan
,
E.
, and
Amon
,
C. H.
, 2000, “
Thermal Management Strategies for Embedded Electronic Components of Wearable Computers
,”
ASME J. Electron. Packag.
,
122
, pp.
98
106
.
6.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
, 2003, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Compon. Packag. Technol.
,
26
, pp.
116
125
.
7.
Vesligaj
,
M. J.
, and
Amon
,
C. H
, 1999, “
Transient Thermal Management of Temperature Fluctuations During Time Varying Workloads on Portable Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
22
, pp.
541
550
.
8.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2007, “
Analysis of Solid-Liquid Phase Change Under Pulsed Heating
,”
ASME J. Heat Transfer
,
129
, pp.
395
400
.
9.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
1
), pp.
191
199
.
10.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Thermal Management of Transient Electronics—Phase Change Energy Storage or Copper Heat Sink
,”
ASME J. Electron. Packag.
,
126
, pp.
308
316
.
11.
Evans
,
A. G.
,
He
,
M. Y.
,
Hutchinson
,
J. W.
, and
Shaw
,
M.
, 2001, “
Temperature Distribution in Advanced Power Electronics Systems and the Effect of Phase Change Materials on Temperature Suppression During Power Pulses
,”
ASME J. Electron. Packag.
,
123
, pp.
211
217
.
12.
Leoni
,
N.
, and
Amon
,
C. H.
, 1997, “
Transient Thermal Design of Wearable Computers With Embedded Electronics Using Phase Change Materials
,”
ASME Proceedings of the 32nd National Heat Transfer Conference
, Baltimore, MD, Aug. 8–12, Vol.
5
, pp.
49
56
, ASME HTD-Vol. 343.
13.
Hasnain
,
S. M.
, 1998, “
Review of Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
, pp.
1127
1138
.
14.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Kang
,
S. S.
, 2005, “
A Novel Hybrid Heat Sink Using Phase Change Material for Transient Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
, pp.
281
289
.
15.
Dutta
,
P.
,
Nayak
,
K. C.
,
Saha
,
S. K.
, and
Srinivasan
,
K.
, 2006, “
A Numerical Model for Heat Sinks With Phase Change Materials and Thermal Conductivity Enhancers
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1833
1844
.
16.
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
, 2008, “
Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials
,”
ASME J. Heat Transfer
,
130
(
3
),
034505
.
17.
Tong
,
X.
,
Khan
,
J.
, and
Amin
,
M. R.
, 1996, “
Enhancement of Heat Transfer by Inserting a Metal Matrix Into a Phase Change Material
,”
Numer. Heat Transfer, Part A
,
30
(
2
), pp.
125
141
.
18.
Siahpush
,
A.
,
O’Brien
,
J.
, and
Crepeau
,
J.
, 2008, “
Phase Change Heat Transfer Enhancement Using Copper Porous Foam
,”
ASME J. Heat Transfer
,
130
,
082301
.
19.
Osama
,
M.
,
Lafdi
,
K.
, and
Efgafy
,
A.
, 2005, “
Carbon Foam Matrices Saturated With PCM for Thermal Protection Purposes
,”
Carbon
,
44
(
10
), pp.
2080
2088
.
20.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
, 2006, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
Appl. Therm. Eng.
,
26
, pp.
1652
1661
.
21.
Py
,
X.
,
Olives
,
R.
, and
Mauran
,
S.
, 2001, “
Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2727
2737
.
22.
Pokhrel
,
R.
,
Gonzalez
,
J. E.
,
Hight
,
T.
, and
Adalsteinsson
,
T.
, 2010, “
Analysis and Design of a Paraffin/Graphite Composite PCM Integrated in a Thermal Storage Unit
,”
ASME J. Sol. Energy Eng.
,
132
,
041006
.
23.
Fukai
,
J.
,
Kanou
,
M.
,
Kodama
,
Y.
, and
Miyatak
,
O.
, 2000, “
Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers
,”
Energy Convers. Manage.
,
41
(
14
), pp.
1543
1556
.
24.
Fukai
,
J.
,
Hamada
,
Y.
,
Morozumi
,
Y.
, and
Miyatake
,
O.
, 2002, “
Effect of Carbon Fiber Brushes on Conductive Heat Transfer in Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4781
4792
.
25.
Frusteri
,
F.
,
Leonardi
,
V.
,
Vasta
,
S.
, and
Restuccia
,
G.
, 2005, “
Thermal Conductivity Measurement of a PCM Based Storage System Containing Carbon Fibers
,”
Appl. Therm. Eng.
,
25
, pp.
1623
1633
.
26.
Elgafy
,
A.
, and
Lafdi
,
K.
, 2005, “
Effect of Carbon Nanofiber Additives on Thermal Behavior of Phase Change Materials
,”
Carbon
,
43
, pp.
3067
3074
.
27.
Kopec
,
T. C.
,
Weinstein
,
R. D.
,
Fleischer
,
A. S.
,
D’Addio
,
E.
, and
Bessel
,
C. A.
, 2008, “
The Effects of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics
,”
ASME J. Heat Transfer
,
130
(
4
),
042405
.
28.
Bessel
,
C. A.
,
Laubernds
,
K.
,
Rodriguez
,
N. M.
,
Baker
,
R.
, and
Terry
,
K.
, 2001, “
Graphite Nanofibers as an Electrode for Fuel Cell Applications
,”
J. Phys. Chem.
,
105
, pp.
1115
1118
.
You do not currently have access to this content.