This paper presents a double-tube once-through steam generator (DOTSG) consisting of the outer straight tube and the inner helical tube. The tube length and pressure drop of are important parameters in optimal design of DOTSG. For optimal design of such a system, it was modeled to estimate its tube length and pressure drop. Pitch of inner helical tube, flow distribution ratio of the primary fluid, and tube assemblage are considered as design parameters. Then fast and elitist nondominated sorting genetic algorithm-II (NSGA-II) method was applied to find the optimum values of design parameters. In the presented optimal design approach, the tube length and the total pressure drop are two objective functions. The results of optimal designs were a set of multiple optimum solutions, called “Pareto optimal solutions.” The sensitivity analysis of change in optimum tube length and pressure drop with change in design parameters of the DOTSG is also performed and the results are reported.

References

1.
Kuznetsov
,
V.
, 2009, “
Design and Technology Development Status and Design Considerations for Innovative Small and Medium Sized Reactors
,”
ASME J. Eng. Gas Turbines Power
,
131
, pp.
064001(1)
064001(6)
.
2.
Ingersoll
,
D. T.
, 2009, “
Deliberately Small Reactors and the Second Nuclear Era
,”
Prog. Nucl. Energy
,
51
, pp.
589
603
.
3.
Kang
,
S.
,
Patil
,
B.
,
Zarate
,
J. A.
, and
Roy
,
R. P.
, 2001, “
Isothermal and Heated Turbulent Upflow in a Vertical Annular Channel—Part I. Experimental Measurements
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1171
1184
.
4.
Zarate
,
J. A.
,
Roy
,
R. P.
, and
Laporta
,
A.
, 2001, “
Isothermal and Heated Turbulent Upflow in a Vertical Annular Channel—Part II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1185
1199
.
5.
Lu
,
G. Y.
, and
Wang
,
J.
, 2008, “
Experimental Investigation on Heat Transfer Characteristics of Water Flow in a Narrow Annulus
,”
Appl. Therm. Eng.
,
28
, pp.
8
13
.
6.
Naphon
,
P.
, and
Wongwises
S.
, 2006, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renewable Sustainable Energy Rev.
,
10
, pp.
463
490
.
7.
Louw
,
W. I.
, and
Meyer
,
J. P.
, 2005, “
Heat Transfer During Annular Tube Contact in a Helically Coiled Tube-In-Tube Heat Exchanger
,”
Heat Transfer Eng.
,
26
(
6
), pp.
16
21
.
8.
Wang
,
Z. H.
,
Liu
,
R. L.
, and
Jia
,
D. N.
, 2002, “
Heat Transfer of Super Gas in Narrow Annular Gap
,”
J. Xi’an Jiaotong Univ.
,
36
(
7
), pp.
697
700
(in Chinese).
9.
Zeng
,
H. Y.
,
Qiu
,
S. Z.
, and
Jia
,
D. N.
, 2007, “
Investigation on the Characteristics of the Flow and Heat Transfer in Bilaterally Heated Narrow Annuli
,”
Int. J. Heat Mass Transfer
,
50
, pp.
492
501
.
10.
Chen
,
M. H.
,
Li
,
R. Z.
, and
Li
,
B. Y.
, 2005, “
A Design of Compact and Enhanced Heat Enhanced Heat Exchanger Used in Integrated Nuclear Reactor
,”
SMiRT18-W301-4, Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology
,
Beijing, China
, pp.
4865
4871
.
11.
Yu
,
J. H.
, and
Jia
,
B. S.
, 2006, “
Thermal Hydraulic Analysis of Double-Side Heating Once-Through Steam Generator With Helical Tubes
,”
Chin. J. Nucl. Sci. Eng.
,
26
(
1
), pp.
57
62
(in Chinese).
12.
Costa
,
A. L. H.
, and
Queiroz
,
E. M.
, 2008, “
Design Optimization of Shell-And-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
28
, pp.
1798
1805
.
13.
Rao
,
K. R.
,
Shrinivasa
,
U.
, and
Srinivasan
,
J.
, 1991, “
Synthesis of Cost Optimal Shell-And-Tube Heat Exchangers
,”
Heat Transfer Eng.
,
12
(
3
), pp.
47
55
.
14.
Fesanghary
,
M.
,
Damangir
,
E.
, and
Soleimani
,
I.
, 2009, “
Design Optimization of Shell and Tube Heat Exchangers Using Global Sensitivity Analysis and Harmony Search Algorithm
,”
Appl. Therm. Eng.
,
29
, pp.
1026
1031
.
15.
Ponce-Ortega
,
J. M.
,
Serna-González
,
M.
, and
Jiménez-Gutiérrez
,
A.
, 2009, “
Use of Genetic Algorithms for the Optimal Design of Shell-And-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
29
, pp.
203
209
.
16.
Ravagnani
,
M. A. S. S.
, and
Caballero
,
J. A.
, 2007, “
Optimal Heat Exchanger Network Synthesis With the Detailed Heat Transfer Equipment Design
,”
Comput. Chem. Eng.
,
31
, pp.
432
1448
.
17.
Caputo
,
A. C.
,
Pelagagge
,
P. M.
, and
Salini
,
P.
, 2008, “
Heat Exchanger Design Based on Economic Optimization
,”
Appl. Therm. Eng.
,
28
, pp.
1151
1159
.
18.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
, 1996,
Thermal Design and Optimization
,
Wiley
,
New York
.
19.
Johannessen
,
E.
,
Nummedal
,
L.
, and
Kjelstrup
,
S.
, 2002, “
Minimizing the Entropy Production in Heat Exchange
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2649
2654
.
20.
Zhang
,
L. N.
,
Yang
,
C. X.
, and
Zhou
,
J. H.
, 2010, “
A Distributed Parameter Model and Its Application in Optimizing the Plate-Fin Heat Exchanger Based on the Minimum Entropy Generation
,”
Int. J. Therm. Sci.
,
49
, pp.
1427
1436
.
21.
Winterton
,
R. H. S.
, 1998, “
Where Did the Dittus and Boelter Equation Come From?
Int. J. Heat Mass Transfer
,
41
, pp.
809
810
.
22.
Wei
,
X. Y.
,
Dai
,
C. H.
,
Tai
,
Y.
, and
Zhao
,
F. Y.
, 2010, “
Characteristic Optimization of the Double-Tube OTSG
,”
ICONE18-29137, Proceedings of the 18th International Conference on Nuclear Engineering
,
Xi’an, China
, pp.
147
152
.
23.
Budov
,
V. M.
, and
Dmitriev
,
S. M.
, 1985, “
Heat Transfer Enhancement in Narrow Annuli
,”
Two-phase Flow Energy Mach.
,
3
, pp.
122
124
(in Russian).
24.
Fox
,
R. W.
, and
McDonald
A. T.
, 2001,
Introduction to Fluid Mechanics
, 5th ed.,
Wiley
,
New York
.
25.
Sieder
,
E. N.
, and
Tate
,
G. E.
, 1936, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
, pp.
1429
1436
.
26.
Rohsenow
,
W. M.
, and
Clark
,
J. A.
, 1951,
Heat Transfer and Pressure Drop Data for High Heat Flux Densities to Water at High Sub-Critical Pressures
,
Stanford University Press
,
Stanford, CA
.
27.
Hilbert
,
R.
,
Janiga
,
G.
,
Baron
,
R.
, and
Thévenin
,
D.
, 2006, “
Multiobjective Shape Optimization of a Heat Exchanger Using Parallel Genetic Algorithms
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2567
2577
.
28.
Goldberg
,
D. E.
, 1989,
Genetic Algorithm in Search, Optimization and Machine Learning
,
Addison-Wesley Professional
,
Boston, MA
.
29.
Srinivas
,
N.
, and
Deb
,
K.
, 1994, “
Multi-Objective Optimization Using Non-Dominated Sorting in Genetic Algorithms
,”
J. Evol. Comput.
,
2
(
3
), pp.
221
248
.
30.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.