A numerical study has been carried out to understand and highlight the effects of axial wall conduction in a conjugate heat transfer situation involving simultaneously developing laminar flow and heat transfer in a square microchannel with constant flux boundary condition imposed on bottom of the substrate wall. All the remaining walls of the substrate exposed to the surroundings are kept adiabatic. Simulations have been carried out for a wide range of substrate wall to fluid conductivity ratio (ksf ∼ 0.17–703), substrate thickness to channel depth (δsf ∼ 1–24), and flow rate (Re ∼ 100–1000). These parametric variations cover the typical range of applications encountered in microfluids/microscale heat transfer domains. The results show that the conductivity ratio, ksf is the key factor in affecting the extent of axial conduction on the heat transport characteristics at the fluid–solid interface. Higher ksf leads to severe axial back conduction, thus decreasing the average Nusselt number (Nu¯). Very low ksf leads to a situation which is qualitatively similar to the case of zero-thickness substrate with constant heat flux applied to only one side, all the three remaining sides being kept adiabatic; this again leads to lower the average Nusselt number (Nu¯). Between these two asymptotic limits of ksf, it is shown that, all other parameters remaining the same (δsf and Re), there exists an optimum value of ksf which maximizes the average Nusselt number (Nu¯). Such a phenomenon also exists for the case of circular microtubes.

References

References
1.
Kakac
,
S.
,
Vasiliev
,
L. L.
,
Bayazitoglu
,
Y.
, and
Yener
,
Y.
, eds., 2005,
Microscale Heat Transfer: Fundamentals and Applications
,
Dordrecht
,
The Netherlands
.
2.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
London
.
3.
Yarin
,
L. P.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
, 2009,
Fluid Flow, Heat Transfer and Boiling in Micro-Channels
,
Springer-Verlag
,
Berlin
.
4.
Tiselj
,
I.
,
Hetsroni
,
G.
,
Mavko
,
B.
,
Mosyak
,
A.
,
Pogrebhyak
,
E.
, and
Segal
,
Z.
, 2004, “
Effect of Axial Conduction on the Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2551
2565
.
5.
Gamrat
,
G.
,
Marinet
,
M. F.
, and
Asendrych
,
D.
, 2005, “
Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2943
2954
.
6.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
, 2005, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5580
5601
.
7.
Sobierska
,
E.
,
Kulenovic
,
R.
,
Mertz
,
R.
, and
Groll
,
M.
, 2006, “
Experimental Results of Flow Boiling of Water in a Vertical Microchannel
,”
Exp. Therm. Fluid Sci.
,
31
(
2
), pp.
111
119
.
8.
Moharana
,
M. K,
Agarwal
,
G.
, and
Khandekar
,
S.
, 2011, “
Axial Conduction in Single-Phase Simultaneously Developing Flow in a Rectangular Mini-Channel Array
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1001
1012
.
9.
Bahnke
,
G. D.
, and
Howard
,
C. P.
, 1964, “
The Effect of Longitudinal Heat Conduction on Periodic-Flow Heat Exchanger Performance
,”
ASME J. Eng. Power
,
86
, pp.
105
120
.
10.
Peterson
,
R. B.
, 1998, “
Size Limits for Regenerative Heat Engines
,”
Nanoscale Microscale Thermophys. Eng.
,
2
(
2
), pp.
121
131
.
11.
Peterson
,
R. B.
, 1999, “
Numerical Modeling of Conduction Effects in Microscale Counter Flow Heat Exchangers
,”
Nanoscale Microscale Thermophys. Eng.
,
3
(
1
), pp.
17
30
.
12.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
, 2004, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.
13.
Li
,
Z.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
, 2007, “
Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3447
3460
.
14.
Zhang
,
S. X.
,
He
,
Y. L.
,
Lauriat
,
G.
, and
Tao
,
W. Q.
, 2010, “
Numerical Studies of Simultaneously Developing Laminar Flow and Heat Transfer in Microtubes With Thick Wall and Constant Outside Wall Temperature
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3977
3989
.
15.
Petukhov
,
B. S.
, 1967, “
Heat Transfer and Drag of Laminar Flow of Liquid in Pipes
,” Energiya, Moscow.
16.
Lelea
,
D.
, 2007, “
The Conjugate Heat Transfer of the Partially Heated Microchannels
,”
Heat Mass Transfer
,
44
(
1
), pp.
33
41
.
17.
Faghri
,
M.
, and
Sparrow
,
E. M.
, 1980, “
Simultaneous Wall and Fluid Axial Conduction in Laminar Pipe-Flow Heat Transfer
,”
ASME Trans. J. Heat Transfer
,
102
(
1
), pp.
58
63
.
18.
Cotton
,
M. A.
, and
Jackson
,
J. D.
, 1985, “
The Effect of Heat Conduction in a Tube Wall Upon Forced Convection Heat Transfer in the Thermal Entry Region
,”
Numerical Methods in Thermal Problems
,
Pineridge Press
,
Swansea
, Vol.
IV
, pp.
504
515
.
19.
Chiou
,
J. P.
, 1980, “
The Advancement of Compact Heat Exchanger Theory Considering the Effects of Longitudinal Heat Conduction and Flow Nonuniformity
,”
R. K.
Shah
,
C.
C. F. McDonald
,
P.
Howard
, eds.,
ASME-HTD Symposium on Compact Heat Exchangers
, Vol.
10
, pp.
101
121
.
20.
Hessel
,
V.
,
Renken
,
A.
,
Schouten
,
J. C.
, and
Yoshida
,
J.
eds., 2009,
Micro Process Engineering: A Comprehensive Handbook, Volume 1: Fundamentals, Operations and Catalysis
,
Wiley-VCH
,
Weinheim, Germnay
.
21.
Cole
,
K. D.
, and
Cetin
,
B.
, 2011, “
The Effect of Axial Conduction on Heat Transfer in a Liquid Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2542
2549
.
22.
Guo
,
Z. Y.
, and
Li
,
Z. X.
, 2003, “
Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
284
298
.
23.
Lelea
,
D.
, 2009, “
The Heat Transfer and Fluid Flow of a Partially Heated Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
36
(
8
), pp.
794
798
.
24.
Nonino
,
C.
,
Savino
,
S.
,
Giudice
,
S. D.
, and
Mansutti
,
L.
, 2009, “
Conjugate Forced Convection and Heat Conduction in Circular Microchannels
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
823
830
.
25.
Kosar
,
A.
, 2010, “
Effect of Substrate Thickness and Material on Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
4
), pp.
635
642
.
26.
Celata
,
G. P.
,
Cumo
,
M.
,
Marconi
,
V.
,
McPhail
,
S. J.
, and
Zummo
,
G.
, 2006, “
Microtube Liquid Single-Phase Heat Transfer in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3538
3546
.
27.
Liu
,
Z.
,
Zhao
,
Y.
, and
Takei
,
M.
, 2007, “
Experimental Study on Axial Wall Heat Conduction for Conductive Heat Transfer in Stainless Steel Microtube
,”
Heat Mass Transfer
,
43
(
6
), pp.
587
594
.
28.
Moharana
,
M. K.
,
Peela
,
N. R.
,
Khandekar
,
S.
, and
Kunzru
,
D.
, 2011, “
Distributed Hydrogen Production From Ethanol in a Microfuel Processor: Issues and Challenges
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
524
533
.
29.
Kolb
,
G.
, and
Hessel
,
V.
, 2004, “
Micro-Structured Reactors for Gas Phase Reactions
,”
Chem. Eng. J.
,
98
(
1–2
), pp.
1
38
.
30.
Xu
,
B.
,
Ooi
,
K. T.
,
Mavriplis
,
C.
, and
Zaghloul
,
M. E.
, 2003, “
Evaluation of Viscous Dissipation in Liquid Flow in Microchannels
,”
J. Micromech. Microeng.
,
13
(
1
), pp.
53
57
.
31.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
Viscous Dissipation Effects in Microtubes and Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3159
3169
.
32.
Morini
,
G. L.
, 2006, “
Scaling Effects for Liquid Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
64
73
.
33.
ANSYS-FLUENT® 12.0 Users Guide, Ansys Inc., USA.
34.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 1998, “
Modeling Nusselt Number for Thermally Developing Laminar Flow in Non-Circular Ducts
,”
Proceedings of the 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
Albuquerque
, June
14
18
, Paper No. 98-2586.
35.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2004, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME Trans. J. Heat Transfer
,
126
(
1
), pp.
54
61
.
36.
Lee
,
P. S.
, and
Garimella
,
S. V.
, 2006, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3060
3067
.
37.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts (Advances in Heat Transfer)
,
Academic Press
,
New York
.
38.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.
You do not currently have access to this content.