This paper presents experimental investigations of charging (solidification) and discharging (internal/external melting) periods of an ice-on-coil type latent heat thermal energy storage system. Experimental investigations are performed for various constant heat loads and inlet temperatures with several flow rates of the heat transfer fluid. In experiments, variations of the solid/liquid interfaces around the tubes are monitored with the aid of 15 interface measurement cards for both solidification and melting periods. Energy variations obtained from the measurement cards are validated by conservation of energy, and the mean difference is obtained as 5%. The parametric results indicated that the inlet temperature and the flow rate of the secondary coolant are significant both on the charging and discharging capability of the system. It is also introduced that, for the current experimental conditions, external melting mode can supply relatively lower outlet temperatures for a longer period in comparison with the internal melting mode.

References

References
1.
Dincer
,
I.
and
Rosen
,
M. A.
, 2002,
Thermal Energy Storage: Systems and Applications
,
Wiley
,
London
.
2.
Farid
,
M. M.
,
Khudhai
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
, 2005, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
, pp.
1597
1615
.
3.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
, 2003, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
, pp.
251
283
.
4.
Nomura
,
T.
,
Okinaka
,
N.
, and
Akiyama
,
T.
, 2010, “
Technology of Latent Heat Storage for High Temperature Application: A Review
,”
ISIJ Int.
,
50
, pp.
1229
1239
.
5.
Ezan
,
M. A.
,
Ozdogan
,
M.
, and
Erek
,
A.
, 2011, “
Experimental Study on Charging and Discharging Periods of Water in a Latent Heat Storage Unit
,”
Int. J. Therm. Sci.
,
50
, pp.
2205
2219
.
6.
Agyenim
,
F.
,
Eames
,
P.
, and
Smyth
,
M.
, 2010, “
Heat Transfer Enhancement in Medium Temperature Thermal Energy Storage System Using a Multitube Heat Transfer Array
,”
Renew. Energy
,
35
, pp.
198
207
.
7.
Trp
,
A.
,
Lenic
,
K.
, and
Frankovic
,
B.
, 2006, “
Analysis of the Influence of Operating Conditions and Geometric Parameters on Heat Transfer in Water-Paraffin Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
26
, pp.
1830
1839
.
8.
Erek
,
A.
,
İlken
,
Z.
, and
Acar
,
M. A.
, 2005, “
Experimental and Numerical Investigation of Thermal Energy Storage With a Finned Tube
,”
Int. J. Energy Res.
,
29
, pp.
283
301
.
9.
Lacroix
,
M.
, 1993, “
Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Sol. Energy
,
50
, pp.
357
367
.
10.
Liu
,
Z.
,
Sun
,
X.
, and
Ma
,
C.
, 2005, “
Experimental Study of the Characteristics of Solidification of Strearic Acid in an Annulus and Its Thermal Conductivity Enhancement
,”
Energy Convers. Manage.
,
46
, pp.
971
984
.
11.
Habeebullah
,
B. A.
, 2007, “
An Experimental Study on Ice Formation Around Horizontal Long Tubes
,”
Int. J. Refrig.
,
30
, pp.
789
797
.
12.
Castell
,
A.
,
Solé
,
C.
,
Medrano
,
M.
,
Roca
,
J.
,
Cabeza
,
L. F.
, and
Garcia
,
D.
, 2008, “
Natural Convection Heat Transfer Coefficients in Phase Change Material (PCM) Modules With External Vertical Fins
,”
Appl. Therm. Eng.
,
28
, pp.
1676
1686
.
13.
Erek
,
A.
, and
Dincer
,
I.
, 2009, “
Heat Transfer Analysis of Encapsulated Ice Thermal Energy Storage System With Variable Heat Transfer Coefficient in Downstream
,”
Int. J. Heat Mass Transfer
,
52
, pp.
851
859
.
14.
Bédécarrats
,
J. P.
,
Castaing-Lasvignottes
,
J.
,
Strub
,
F.
, and
Dumas
,
J. P.
, 2009, “
Study of a Phase Change Energy Storage Using Spherical Capsules. Part I: Experimental Results
,”
Energy Convers. Manage.
,
50
, pp.
2527
2536
.
15.
Tan
,
F. L.
,
Hosseinizadeh
,
S. F.
,
Khodadadi
,
J. M.
, and
Fan
,
L.
, 2009, “
Experimental and Computational Study of Constrained Melting of Phase Change Materials (PCM) Inside a Spherical Capsule
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3464
3472
.
16.
www.calmac.com
17.
www.baltimoreaircoil.com
18.
Banaszek
,
J.
,
Domanski
,
R.
,
Rebow
,
M.
, and
El-Sagier
,
F.
, 1999, “
Experimental Study of Solid-Liquid Phase Change in a Spiral Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
19
, pp.
1253
1277
.
19.
Wang
,
B.
,
Zhang
,
M.
,
Li
,
X.
, and
Yang
,
X.
, 2003, “
Experimental Investigation of Discharge Performance and Temperature Distribution of an External Melt Ice-on-Coil Ice Storage Tank
,”
HVAC&R Res.
,
9
, pp.
291
308
.
20.
Neto
,
J. H. M.
, and
Krarti
,
M.
, 1997, “
Deterministic Model for an Internal Melt Ice-on-Coil Thermal Storage Tank
,”
ASHRAE Trans.
,
103
, pp.
113
124
.
21.
Neto
,
J. H. M.
, and
Krarti
,
M.
, 1997, “
Experimental Validation of a Numerical Model for an Internal Melt Ice-on-Coil Thermal Storage Tank
,”
ASHRAE Trans.
,
103
, pp.
125
138
.
22.
Erek
,
A.
, and
Ezan
,
M. A.
, 2007, “
Experimental and Numerical Study on Charging Processes of an Ice-on-Coil Thermal Energy Storage System
,”
Int. J. Energy Res.
,
31
, pp.
158
176
.
23.
Ekren
,
O.
,
Ezan
,
M. A.
, and
Erek
,
A.
, 2011, “
Experimental Assessment of Energy Storage Via Variable Speed Compressor
,”
Int. J. Refrig.
,
34
, pp.
1424
1435
.
24.
Ezan
,
M. A.
,
Erek
,
A.
, and
Dincer
,
I.
, 2011, “
Energy and Exergy Analyses of an Ice-on-Coil Thermal Energy Storage System
,”
Energy
,
36
, pp.
6375
6386
.
25.
Jay
,
H.
, and
Lehr
,
J. K.
, 2005,
Water Encyclopedia
,
Wiley
,
New York
.
26.
Ezan
,
M. A.
,
Çetin
,
L.
, and
Erek
,
A.
, 2011, “
Ice Thickness Measurement Method for Thermal Energy Storage Unit
,”
J. Therm. Sci. Technol.
,
31
, pp.
1
10
.
27.
Holman
,
J. P.
, 2000,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
28.
Jekel
,
T. B.
,
Mitchell
,
J. W.
, and
Klein
,
S. A.
, 1993, “
Modeling of Ice-Storage Tanks
,”
ASHRAE Trans.
,
99
, pp.
1016
1024
.
29.
Drees
,
K. H.
, and
Braun
,
J. E.
, 1995, “
Modeling of Area-Constrained Ice Storage Tanks
,”
HVAC&R Res.
,
1
, pp.
143
158
.
You do not currently have access to this content.