In this paper, a proactive thermal management technique called “power multiplexing” is explored for many-core processors. Power multiplexing involves redistribution of the locations of active cores at regular time intervals to obtain uniform thermal profile with low peak temperature. Three different migration policies namely random, cyclic, and global coolest replace have been employed for power multiplexing and their efficacy in reducing the peak temperature and thermal gradient on chip is investigated. For a given migration frequency, global coolest replace policy is found to be the most effective among the three policies considered as this policy provides 10 °C reduction in peak temperature and 20 °C reduction in maximum spatial temperature difference on a 256 core chip. Power configuration on the chip is characterized by a parameter called “proximity index” which emerges as an important parameter to represent the spatial power distribution on a chip. We also notice that the overall performance of the chip could be improved by 10% using global multiplexing.

References

1.
Intel, “
Product Brief
” http://download.intel.com/products/processor/corei7EE/323307.pdf
2.
AMD, “
Physical Cores V. Enhanced Threading Software: Performance Evaluation Whitepaper
,” http://www.amd.com/us/Documents/Cores_vs_Threads_Whitepaper.pdf
3.
http://www.ansys.com/products/fluid-dynamics/fluent
4.
Asanovic
,
K.
,
Bodik
,
R.
,
Catanzaro
,
B. C.
,
Gebis
,
J. J.
,
Husbands
,
P.
,
Keutzer
,
K.
,
Patterson
,
D. A.
,
Plishker
,
W. L.
,
Shalf
,
J.
,
Williams
,
S. W.
, and
Yelick
,
K. A.
, 2006, “
The Landscape of Parallel Computing Research: A View from Berkeley
,”
EECS Department, University of California, Berkeley
, Technical Report No. UCB/EECS-2006-183.
5.
Garver
,
S.-L.
, and
Crepps
,
B.
, 2009, “
The New Era of Tera-Scale Computing
,” http://software.intel.com/en-us/articles/the-new-era-of-tera-scale-computing
6.
Yeh
,
D.
,
Peh
,
L.-S.
,
Borkar
,
S.
,
Darringer
,
J.
,
Agarwal
,
A.
, and
Hwu
,
W.-M.
, 2008, “
Thousand-Core Chips [Roundtable]
,”
IEEE Des. Test Comput.
,
25
, pp.
272
278
.
7.
Rodgers
,
P.
,
Eveloy
,
V.
, and
Pecht
,
M. G.
, 2005, “
Limits of Air-Cooling: Status and Challenges
,”
presented at IEEE Twenty First Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).
8.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
, 2007, “
Towards a Thermal Moore’s Law
,”
IEEE Trans. Adv. Packag.
,
30
, pp.
462
474
.
9.
Zhou
,
P.
,
Hom
,
J.
,
Upadhya
,
G.
,
Goodson
,
K.
, and
Munch
,
M.
, 2004, “
Electro-Kinetic Microchannel Cooling System for Desktop Computers
,”
presented at Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).
10.
Wei
,
H.
,
Stan
,
M. R.
,
Gurumurthi
,
S.
,
Ribando
,
R. J.
, and
Skadron
,
K.
, 2010, “
Interaction of Scaling Trends in Processor Architecture and Cooling
,”
presented at 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).
11.
Mukherjee
,
R.
, and
Memik
,
S. O.
, 2006, “
Physical Aware Frequency Selection for Dynamic Thermal Management in Multi-Core Systems
,”
presented at IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
12.
Janicki
,
M.
,
Collet
,
J. H.
,
Louri
,
A.
, and
Napieralski
,
A.
, 2010, “
Hot Spots and Core-to-Core Thermal Coupling in Future Multi-Core Architectures
,”
presented at 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).
13.
Srinivasan
,
J.
,
Adve
,
S. V.
,
Bose
,
P.
, and
Rivers
,
J. A.
, 2004, “
The Case for Lifetime Reliability-Aware Microprocessors
,”
presented at 31st Annual International Symposium on Computer Architecture.
14.
Kursun
,
E.
, and
Chen-Yong
,
C.
, 2009, “
Temperature Variation Characterization and Thermal Management of Multicore Architectures
,”
IEEE MICRO.
,
29
, pp.
116
126
.
15.
Guoping
,
X.
, 2006, “
Thermal Modeling of Multi-Core Processors
,”
presented at The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM).
16.
Wei
,
H.
,
Skadron
,
K.
,
Gurumurthi
,
S.
,
Ribando
,
R. J.
, and
Stan
,
M. R.
, 2010, “
Exploring the Thermal Impact on Manycore Processor Performance
,”
presented at 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).
17.
Gupta
,
M. P.
,
Minki
,
C.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
, 2010, “
Thermal Mangament of Multicore Processors Using Power Multiplexing
,”
presented at 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).
18.
Rao
,
R.
,
Vrudhula
,
S.
, and
Chakrabarti
,
C.
, 2007, “
Throughput of Multi-Core Processors Under Thermal Constraints
,”
presented at ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED).
19.
Donald
,
J.
, and
Martonosi
,
M.
, 2006, “
Techniques for Multicore Thermal Management: Classification and New Exploration
,”
presented at 33rd International Symposium on Computer Architecture (ISCA).
20.
Hanumaiah
,
V.
,
Vrudhula
,
S.
, and
Chatha
,
K. S.
, 2009, “
Maximizing Performance of Thermally Constrained Multi-Core Processors by Dynamic Voltage and Frequency Control
,”
presented at IEEE/ACM International Conference on Computer-Aided Design—Digest of Technical Papers (ICCAD).
21.
Chaparro
,
P.
,
Gonzalez
,
J.
,
Magklis
,
G.
,
Cai
,
Q.
, and
Gonzalez
,
A.
, 2007, “
Understanding the Thermal Implications of Multi-Core Architectures
,”
IEEE Trans. Parallel Distrib. Syst.
,
18
, pp.
1055
1065
.
22.
Brooks
,
D.
, and
Martonosi
,
M.
, 2001, “
Dynamic Thermal Management for High-Performance Microprocessors
,”
presented at The Seventh International Symposium on High-Performance Computer Architecture (HPCA).
23.
Zhigang
,
H.
,
Buyuktosunoglu
,
A.
,
Srinivasan
,
V.
,
Zyuban
,
V.
,
Jacobson
,
H.
, and
Bose
,
P.
, 2004, “
Microarchitectural Techniques for Power Gating of Execution Units
,”
presented at International Symposium on Low Power Electronics and Design (ISLPED).
24.
Cho
,
M.
,
Sathe
,
N.
,
Gupta
,
M.
,
Kumar
,
S.
,
Yalamanchilli
,
S.
, and
Mukhopadhyay
,
S.
, 2010, “
Proactive Power Migration to Reduce Maximum Value and Spatiotemporal Non-Uniformity of On-Chip Temperature Distribution in Homogeneous Many-Core Processors
,”
presented at 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).
25.
International Technology Roadmap for Semiconductors
(2008), http://www.itrs.net/http://www.itrs.net/
26.
Spalart
,
P.
, and
Allmaras
,
S.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
American Institute of Aeronautics and Astronautics, Technical Report No. AIAA-92-0439.
27.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
Washington, DC/McGraw-Hill, New York
.
28.
Mallows
,
C. L.
, 1972, “
A Note on Asymptotic Joint Normality
,”
Ann. Math. Statist.
,
43
, pp.
508
515
.
29.
Czado
,
C.
, and
Munk
,
A.
, 1998, “
Assessing the Similarity of Distributions—Finite Sample Performance of the Empirical Mallows Distance
,”
J. Statist. Comput. Simul.
,
60
, pp.
319
346
.
30.
Rubner
,
Y.
,
Tomasi
,
C.
, and
Guibas
,
L. J.
, 1998, “
A Metric for Distributions With Applications to Image Databases
,”
presented at Sixth International Conference on Computer Vision.
31.
Jeonghwan
,
C.
,
Chen-Yong
,
C.
,
Franke
,
H.
,
Hamann
,
H.
,
Weger
,
A.
, and
Bose
,
P.
, 2007, “
Thermal-Aware Task Scheduling at the System Software Level
,”
presented at ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED).
You do not currently have access to this content.