Vertically aligned single-walled carbon nanotubes (VA-SWNTs) is expected to be an extra-ordinal material for various optical, electrical, energy, and thermal devices. The recent progress in growth control and characterization techniques will be discussed. The chemical vapor deposition (CVD) growth mechanism of VA-SWNTs is studied based on the in situ growth monitoring by laser absorption during CVD. The growth curves are characterized by an exponential decay of the growth rate from the initial rate determined by ethanol pressure. The initial growth rate and decay of it are discussed with carbon over-coat on metal catalysts and gas phase thermal decomposition of precursor ethanol. For the precisely patterned growth of SWNTs, we recently propose a surface-energy-difference driven selective deposition of catalyst for localized growth of SWNTs. For a self-assembled monolayer (SAM) patterned Si surface, catalyst particles deposit and SWNTs grow only on the hydrophilic regions. The proposed all-liquid-based approach possesses significant advantages in scalability and resolution over state-of-the-art techniques, which we believe can greatly advance the fabrication of nanodevices using high-quality as-grown SWNTs. The optical characterization of the VA-SWNT film using polarized absorption, polarized Raman, and photoluminescence spectroscopy will be discussed. Laser-excitation of a vertically aligned film from top means that each nanotube is excited perpendicular to its axis. Because of this predominant perpendicular excitation, interesting cross-polarized absorption and confusing and practically important Raman features are observed. The extremely high and peculiar thermal conductivity of single-walled carbon nanotubes has been explored by nonequilibrium molecular dynamics simulation approaches. The thermal properties of the vertically aligned film and composite materials are studied by several experimental techniques and Monte Carlo simulations based on molecular dynamics inputs of thermal conductivity and thermal boundary resistance. Current understanding of thermal properties of the film is discussed.

References

References
1.
Murakami
,
Y.
,
Chiashi
,
S.
,
Miyauchi
,
Y.
,
Hu
,
M. H.
,
Ogura
,
M.
,
Okubo
,
T.
, and
Maruyama
,
S.
, 2004, “
Growth of Vertically Aligned Single-Walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy
,”
Chem. Phys. Lett.
,
385
, pp.
298
303
.
2.
Maruyama
,
S.
,
Kojima
,
R.
,
Miyauchi
,
Y.
,
Chiashi
,
S.
, and
Kohno
,
M.
, 2002, “
Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes From Alcohol
,”
Chem. Phys. Lett.
,
360
, pp.
229
234
.
3.
Hata
,
K.
,
Futaba
,
D. N.
,
Mizuno
,
K.
,
Namai
,
T.
,
Yumura
,
M.
, and
Iijima
,
S.
, 2004, “
Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Waited Carbon Nanotubes
,”
Science
,
306
, pp.
1362
1364
.
4.
Zhang
,
G. Y.
,
Mann
,
D.
,
Zhang
,
L.
,
Javey
,
A.
,
Li
,
Y. M.
,
Yenilmez
,
E.
,
Wang
,
Q.
,
McVittie
,
J. P.
,
Nishi
,
Y.
,
Gibbons
,
J.
, and
Dai
,
H. J.
, 2005, “
Ultra-High-Yield Growth of Vertical Single-Walled Carbon Nanotubes: Hidden Roles of Hydrogen and Oxygen
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
, pp.
16141
16145
.
5.
Zhong
,
G. F.
,
Iwasaki
,
T.
,
Honda
,
K.
,
Furukawa
,
Y.
,
Ohdomari
,
I.
, and
Kawarada
,
H.
, 2005, “
Low Temperature Synthesis of Extremely Dense, and Vertically Aligned Single-Walled Carbon Nanotubes
,”
Jpn. J. Appl. Phys. Part 1
,
44
, pp.
1558
1561
.
6.
Eres
,
G.
,
Kinkhabwala
,
A. A.
,
Cui
,
H. T.
,
Geohegan
,
D. B.
,
Puretzky
,
A. A.
, and
Lowndes
,
D. H.
, 2005, “
Molecular Beam-Controlled Nucleation and Growth of Vertically Aligned Single-Wall Carbon Nanotube Arrays
,”
J. Phys. Chem. B
,
109
, pp.
16684
16694
.
7.
Murakami
,
Y.
,
Miyauchi
,
Y.
,
Chiashi
,
S.
, and
Maruyama
,
S.
, 2003, “
Direct Synthesis of High-Quality Single-Walled Carbon Nanotubes on Silicon and Quartz Substrates
,”
Chem. Phys. Lett.
,
377
, pp.
49
54
.
8.
Noda
,
S.
,
Sugime
,
H.
,
Osawa
,
T.
,
Tsuji
,
Y.
,
Chiashi
,
S.
,
Murakami
,
Y.
, and
Maruyama
,
S.
, 2006, “
A Simple Combinatorial Method to Discover Co-Mo Binary Catalysts That Grow Vertically Aligned Single-Walled Carbon Nanotubes
,”
Carbon
,
44
, pp.
1414
1419
.
9.
Sugime
,
H.
,
Noda
,
S.
,
Maruyama
,
S.
, and
Yamaguchi
,
Y.
, 2009, “
Multiple "Optimum" Conditions for Co-Mo Catalyzed Growth of Vertically Aligned Single-Walled Carbon Nanotube Forests
,”
Carbon
,
47
, pp.
234
241
.
10.
Hu
,
M. H.
,
Murakami
,
Y.
,
Ogura
,
M.
,
Maruyama
,
S.
, and
Okubo
,
T.
, 2004, “
Morphology and Chemical State of Co-Mo Catalysts for Growth of Single-Walled Carbon Nanotubes Vertically Aligned on Quartz Substrates
,”
J. Catal.
,
225
, pp.
230
239
.
11.
Xiang
,
R.
,
Einarsson
,
E.
,
Okabe
,
H.
,
Chiashi
,
S.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2010, “
Patterned Growth of High-Quality Single-Walled Carbon Nanotubes From Dip-Coated Catalyst
,”
Jpn. J. Appl. Phys. Part 1
,
49
,
02BA03
.
12.
Xiang
,
R.
,
Wu
,
T. Z.
,
Einarsson
,
E.
,
Suzuki
,
Y.
,
Murakami
,
Y.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2009, “
High-Precision Selective Deposition of Catalyst for Facile Localized Growth of Single-Walled Carbon Nanotubes
,”
J. Am. Chem. Soc.
,
131
, pp.
10344
10345
.
13.
Oshima
,
H.
,
Suzuki
,
Y.
,
Shimazu
,
T.
, and
Maruyama
,
S.
, 2008, “
Novel and Simple Synthesis Method for Submillimeter Long Vertically Aligned Single-Walled Carbon Nanotubes by No-Flow Alcohol Catalytic Chemical Vapor Deposition
,”
Jpn. J. Appl. Phys. Part 1
,
47
, pp.
1982
1984
.
14.
Xiang
,
R.
,
Einarsson
,
E.
,
Okawa
,
J.
,
Miyauchi
,
Y.
, and
Maruyama
,
S.
, 2009, “
Acetylene-Accelerated Alcohol Catalytic Chemical Vapor Deposition Growth of Vertically Aligned Single-Walled Carbon Nanotubes
,”
J. Phys. Chem. C
,
113
, pp.
7511
7515
.
15.
Maruyama
,
S.
,
Einarsson
,
E.
,
Murakami
,
Y.
, and
Edamura
,
T.
, 2005, “
Growth Process of Vertically Aligned Single-Walled Carbon Nanotubes
,”
Chem. Phys. Lett.
,
403
, pp.
320
323
.
16.
Einarsson
,
E.
,
Kadowaki
,
M.
,
Ogura
,
K.
,
Okawa
,
J.
,
Xiang
,
R.
,
Zhang
,
Z. Y.
,
Yamamoto
,
T.
,
Ikuhara
,
Y.
, and
Maruyama
,
S.
, 2008, “
Growth Mechanism and Internal Structure of Vertically Aligned Single-Walled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
8
, pp.
6093
6098
.
17.
Einarsson
,
E.
,
Murakami
,
Y.
,
Kadowaki
,
M.
, and
Maruyama
,
S.
, 2008, “
Growth Dynamics of Vertically Aligned Single-Walled Carbon Nanotubes From In Situ Measurements
,”
Carbon
,
46
, pp.
923
930
.
18.
Xiang
,
R.
,
Einarsson
,
E.
,
Okawa
,
J.
,
Thurakitseree
,
T.
,
Murakami
,
Y.
,
Shiomi
,
J.
,
Ohno
,
Y.
, and
Maruyama
,
S.
, 2010, “
Parametric Study of Alcohol Catalytic Chemical Vapor Deposition for Controlled Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
10
, pp.
3901
3906
.
19.
Xiang
,
R.
,
Zhang
,
Z. Y.
,
Ogura
,
K.
,
Okawa
,
J.
,
Einarsson
,
E.
,
Miyauchi
,
Y.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2008, “
Vertically Aligned (13)C Single-Walled Carbon Nanotubes Synthesized by No-Flow Alcohol Chemical Vapor Deposition and Their Root Growth Mechanism
,”
Jpn. J. Appl. Phys. Part 1
,
47
, pp.
1971
1974
.
20.
Einarsson
,
E.
,
Shiozawa
,
H.
,
Kramberger
,
C.
,
Rummeli
,
M. H.
,
Gruneis
,
A.
,
Pichler
,
T.
, and
Maruyama
,
S.
, 2007, “
Revealing the Small-Bundle Internal Structure of Vertically Aligned Single-Walled Carbon Nanotube Films
,”
J. Phys. Chem. C
,
111
, pp.
17861
17864
.
21.
Murakami
,
Y.
, and
Maruyama
,
S.
, 2006, “
Detachment of Vertically Aligned Single-Walled Carbon Nanotube Films From Substrates and Their Re-Attachment to Arbitrary Surfaces
,”
Chem. Phys. Lett.
,
422
, pp.
575
580
.
22.
Araujo
,
P. T.
,
Doorn
,
S. K.
,
Kilina
,
S.
,
Tretiak
,
S.
,
Einarsson
,
E.
,
Maruyama
,
S.
,
Chacham
,
H.
,
Pimenta
,
M. A.
, and
Jorio
,
A.
, 2007, “
Third and Fourth Optical Transitions in Semiconducting Carbon Nanotubes
,”
Phys. Rev. Lett.
,
98
, p.
067401
.
23.
Duong
,
H. M.
,
Papavassiliou
,
D. V.
,
Mullen
,
K. J.
,
Wardle
,
B. L.
, and
Maruyama
,
S.
, 2008, “
Calculated Thermal Properties of Single-Walled Carbon Nanotube Suspensions
,”
J. Phys. Chem. C
,
112
, pp.
19860
19865
.
24.
Miyauchi
,
Y.
,
Oba
,
M.
, and
Maruyama
,
S.
, 2006, “
Cross-Polarized Optical Absorption of Single-Walled Nanotubes by Polarized Photoluminescence Excitation Spectroscopy
,”
Phys. Rev. B
,
74
, p.
205440
.
25.
Zhang
,
Z. Y.
,
Einarsson
,
E.
,
Murakami
,
Y.
,
Miyauchi
,
Y.
, and
Maruyama
,
S.
, 2010, “
Polarization Dependence of Radial Breathing Mode Peaks in Resonant Raman Spectra of Vertically Aligned Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
81
, p.
165442
.
26.
Murakami
,
Y.
,
Chiashi
,
S.
,
Einarsson
,
E.
, and
Maruyama
,
S.
, 2005, “
Polarization Dependence of Resonant Raman Scatterings From Vertically Aligned SWNT Films
,”
Phys. Rev. B
,
71
, p.
085403
.
27.
Hou
,
B.
,
Xiang
,
R.
,
Inoue
,
T.
,
Einarsson
,
E.
,
Chiashi
,
S.
,
Shiomi
,
J.
,
Miyoshi
,
A.
, and
Maruyama
,
S.
, 2011, “
Decomposition of Ethanol and Dimethyl Ether During Chemical Vapour Deposition Synthesis of Single-Walled Carbon Nanotubes
,”
Jpn. J. App. Phys.
,
50
, p.
065101
.
28.
Andrews
,
R.
,
Jacques
,
D.
,
Qian
,
D. L.
, and
Rantell
,
T.
, 2002, “
Multiwall Carbon Nanotubes: Synthesis and Application
,”
Acc. Chem. Res.
,
35
, pp.
1008
1017
.
29.
Meshot
,
E. R.
, and
Hart
,
A. J.
, 2008, “
Abrupt Self-Termination of Vertically Aligned Carbon Nanotube Growth
,”
Appl. Phys. Lett.
,
92
, pp.
113107
113109
.
30.
Geohegan
,
D. B.
,
Puretzky
,
A. A.
,
Ivanov
,
I. N.
,
Jesse
,
S.
,
Eres
,
G.
, and
Howe
,
J. Y.
, 2003, “
In Situ Growth Rate Measurements and Length Control During Chemical Vapor Deposition of Vertically Aligned Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
,
83
, pp.
1851
1853
.
31.
Ulman
,
A.
, 1996, “
Formation and Structure of Self-Assembled Monolayers
,”
Chem. Rev.
,
96
, pp.
1533
1554
.
32.
Maruyama
,
S.
, 2002, “
A Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs
,”
Physica B
,
323
, pp.
193
195
.
33.
Shiomi
,
J.
, and
Maruyama
,
S.
, 2008, “
Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes
,”
Jpn. J. Appl. Phys. Part 1
,
47
, pp.
2005
2009
.
34.
Yamamoto
,
T.
,
Konabe
,
S.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2009, “
Crossover From Ballistic to Diffusive Thermal Transport in Carbon Nanotubes
,”
Appl. Phys. Express
,
2
, p.
095003
.
35.
Shiomi
,
J.
, and
Maruyama
,
S.
, 2006, “
Heat Conduction of Single-Walled Carbon Nanotube Isotope Superlattice Structures: A Molecular Dynamics Study
,”
Phys. Rev. B
,
74
, p.
155401
.
36.
Shiomi
,
J.
, and
Maruyama
,
S.
, 2006, “
Non-Fourier Heat Conduction in a Single-Walled Carbon Nanotube: Classical Molecular Dynamics Simulations
,”
Phys. Rev. B
,
73
, p.
205420
.
37.
Maruyama
,
S.
,
Igarashi
,
Y.
,
Taniguchi
,
Y.
, and
Shiomi
,
J.
, 2006, “
Anisotropic Heat Transfer of Single-Walled Carbon Nanotubes
,”
J. Therm. Sci. Technol.
,
1
, pp.
138
148
.
You do not currently have access to this content.