A three-dimensional volume of fluid (VOF) simulation of condensation of R134a inside a 1 mm i.d. minichannel is presented. The minichannel is horizontally oriented and the effect of gravity is taken into account. Simulations have been run both with and without taking into account surface tension. A uniform interface temperature and a uniform wall temperature have been fixed as boundary conditions. The mass flux is G = 100 kg m−2 s−1 and it has been assumed that the flow is laminar inside the liquid phase while turbulence inside the vapor phase has been handled by a modified low Reynolds form of the k–ω model. The fluid is condensed till reaching 0.45 vapor quality. The flow is expected to be annular without the presence of waves, therefore the problem was treated as steady state. Computational results displaying the evolution of vapor–liquid interface and heat transfer coefficient are reported and validated against experimental data. The condensation process is found to be gravity dominated, while the global effect of surface tension is found to be negligible. At inlet, the liquid film is thin and evenly distributed all around the tube circumference. Moving downstream the channel, the film thickness remains almost constant in the upper half of the minichannel, while the film at the bottom of the pipe becomes thicker because the liquid condensed at the top is drained by gravity to the bottom.

References

1.
Cavallini
,
A.
,
Doretti
,
L.
,
Matkovic
,
M.
, and
Rossetto
,
L.
, 2006, “
Update on Condensation Heat Transfer and Pressure Drop in Minichannels
,”
Heat Transfer Eng.
,
27
, pp.
74
87
.
2.
Chen
,
Y.
,
Shi
,
M.
,
Cheng
,
P.
, and
Peterson
,
G.
, 2008, “
Condensation in Microchannels
,”
Nanosc. Microsc. Thermophys. Eng.
,
12
, pp.
117
143
.
3.
Matkovic
,
M.
,
Cavallini
,
A.
, Del
Col
,
D.
, and
Rossetto
,
L.
, 2009, “
Experimental Study on Condensation Heat Transfer Inside a Single Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2311
2323
.
4.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
, 2006, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer
,
128
, pp.
1050
1059
.
5.
Fang
,
C.
,
David
,
M.
,
Wang
,
F.
, and
Goodson
,
K. E.
, 2010, “
Influence of Film Thickness and Cross-Sectional Geometry on Hydrophilic Microchannel Condensation
,”
Int. J. Multiphase Flow
,
36
, pp.
608
619
.
6.
Fang
,
C.
,
Steinbrenner
,
J. E.
,
Wang
,
F.
, and
Goodson
,
K. E.
, 2010, “
Impact of Wall Hydrophobicity on Condensation Flow and Heat Transfer in Silicon Microchannels
,”
J. Micromech. Microeng.
,
20
, p.
045018
.
7.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2005, “
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
,”
ASME J. Heat Transfer
,
127
, pp.
1096
1105
.
8.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2009, “
Film Condensation in Horizontal Circular-Section Microchannels
,”
Int. J. Eng. Syst. Model. Simul.
,
1
, pp.
115
121
.
9.
Churchill
,
S. W.
, 1977, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
, pp.
91
92
.
10.
Mickley
,
H. S.
,
Ross
,
R. C.
,
Squyers
,
A. L.
, and
Stewart
,
W. E.
, 1954, “
Heat, Mass and Momentum Transfer for Flow over a Flat Plate with Blowing or Suction
,” Report No. NACA-TN-3208.
11.
Nebuloni
,
S.
, and
Thome
,
J. R.
, 2010, “
Numerical Modeling of Laminar Annular Film Condensation for Different Channel Shapes
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2615
2627
.
12.
Nichols
,
B. D.
,
Hirt
,
C. W.
, and
Hotchkiss
,
R. S.
, 1980, “
SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries
,”
Los Alamos National Laboratory
, Technical Report No. LA-8355.
13.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.
14.
Zhang
,
Y.
,
Faghri
,
A.
, and
Shafii
,
M. B.
, 2001, “
Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels
,”
ASME J. Heat Transfer
,
123
, pp.
501
511
.
15.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries, Inc.
,
La Cañada, CA
.
16.
Fluent, Inc.
, 2006, Fluent 6.3 User’s Guide, Lebanon, NH.
17.
Garimella
,
S.
,
Killion
,
J. D.
, and
Colemann
,
J. W.
, 2002, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels
,”
ASME J. Fluids Eng.
,
124
, pp.
205
214
.
18.
NIST
, 2007,
REFPROP 8
,
National Institute of Standard and Technology
,
Boulder, CO
.
19.
Muzaferija
,
S.
,
Peric
,
M.
,
Sames
,
P.
, and
Schellin
,
T.
, 1998, “
A Two-Fluid Navier-Stokes Solver to Simulate Water Entry
,”
Proceedings of the 22nd Symposium on Naval Hydrodynamics
, Washington, DC, pp.
277
289
.
20.
Boeck
,
T.
,
Li
,
J.
,
López-Pagés
,
E.
,
Yecko
,
P.
, and
Zaleski
,
S.
, 2007, “
Ligament Formation in Sheared Liquid-Gas Layers
,”
Theor. Comput. Fluid Dynamics
,
21
, pp.
59
76
.
21.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.
22.
Van Leer
,
B.
, 1979, “
Toward the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
, pp.
101
113
.
23.
Welch
,
S. W. J.
, and
Wilson
,
J.
, 2000, “
A Volume of Fluid Based Method for Fluid Flows with Phase Change
,”
J. Comput. Phys.
,
160
, pp.
662
682
.
24.
Youngs
,
D. L.
, 1982, “
Time-Dependent Multi-Material Flow with Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
, and
M. J.
Baines
, eds.,
Academic Press
,
New York
.
25.
Lee
,
W. H.
, 1980, “
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,”
Multiphase Transport Fundamentals, Reactor Safety, Applications
, Vol. 1,
T. N.
Verizoglu
, ed.,
Hemisphere Publishing
,
Washington, DC
.
26.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
, 2008, “
Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1003
1016
.
27.
Rouhani
,
S. Z.
, 1969, “
Subcooled Void Fraction
,” AB Atomenergi Sweden, Internal Report No. AE-RTV841.
28.
Hewitt
,
G. F.
, ed., 2002,
Heat Exchanger Design Handbook
,
Begell House
,
New York
.
29.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
and
Zilio
,
C.
, 2006, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
, pp.
31
38
.
You do not currently have access to this content.