The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in microprocessor chip heat flux and growing concern over the emergence of on-chip hot spots. The application of on-chip high flux cooling techniques is today a primary driver for innovation in the electronics industry. In this paper, the physical phenomena underpinning the most promising on-chip thermal management approaches for hot spot remediation, along with basic modeling equations and typical results are described. Attention is devoted to thermoelectric micro-coolers and two-phase microgap coolers. The advantages and disadvantages of these on-chip cooling solutions for high heat flux hot spots are evaluated and compared.

References

References
1.
Shakouri
,
A.
, and
Zhang
,
Y.
, 2005, “
On Chip Solid State Cooling for Integrated Circuits
,”
J. IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
65
69
.
2.
Tritt
,
T. M.
, 2006, “
Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View
,”
MRS Bull.
,
31
(
3
), pp.
188
194
.
3.
Bar-Cohen
,
A.
, and
Watwe
,
A.
, 2001, “
Fundamentals of Thermal Management
,”
Fundamentals of Microsystems of Package
,
R. R.
Tummala
, ed.,
McGraw-Hill
,
New York
.
4.
Wang
,
P.
, and
Bar-Cohen
,
A.
, 2007, “
On-Chip Hot Spot Cooling Using Silicon-Based Thermoelectric Microcooler
,”
J. Appl. Phys.
,
102
(
3
), p.
034503
.
5.
Wang
,
P.
,
Bar-Cohen
,
A.
, and
Yang
,
B.
, 2009, “
Mini-Contact Enhanced Thermoelectric Coolers for On-Chip Hot Spot Cooling
,”
Heat Transfer Eng.
,
30
(
9
), pp.
736
743
.
6.
Yang
,
B.
,
Wang
,
P.
, and
Bar-Cohen
,
A.
, 2007, “
Mini-Contact Enhanced Thermoelectric Cooling of Hot Spot in High Power Devices
,”
IEEE Trans. Compon. Packag. Technol. Part A
,
30
, pp.
432
438
.
7.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
R.
, and
Venkatasubramanian
,
R.
, 2008, “
On-Chip Cooling by Superlattice-Based Thin-film Thermoelectrics
,”
Nat. Nanotechnol.
4
, pp.
235
238
.
8.
Wang
,
P.
, and
Bar-Cohen
,
A.
, 2007 “
Analysis and Simplified Thermal Model of Silicon Microcooler for On-Chip Hot Spot Thermal Management
,”
Proceedings of Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPack’07)
, Vancouver, Canada, July 8–12, 2007. Paper No. IPACK2007-33940.
9.
Wang
,
P.
,
Bar‐Cohen
,
A.
, and
Yang
,
B.
, 2006, “
Impact of Thermal Contact Resistance on Hot Spot Cooling Using Mini-Contact Enhanced Thermoelectric Coolers
,”
Proceedings of IMAPS Thermal Management
2006, Palo Alto, CA, Sept. 10–13 (CDROM).
10.
Wang
,
P.
,
Bar-Cohen
,
A.
, and
Yang
,
B.
, 2006, “
Multiple Silicon-Based Thermoelectric Microcoolers for Hot Spot Thermal Management
,”
Proceedings of the 13th International Heat Transfer Conference (IHTC-13)
, Sydney, Australia, Aug. 13–18, Paper No. CND-09.
11.
www.thermion-company.com
12.
Wang
,
P.
,
Bar-Cohen
,
A.
, and
Yang
,
B.
, 2006, “
Analytical Modeling of Silicon Thermoelectric Microcooler
,”
J. Appl. Phys.
,
100
(
1
), p.
14501
.
13.
Herwaarden
,
A. W.
, and
Sarro
,
P. M.
, 1986, “
Thermal Sensors Based on the Seebeck Effect
,”
Sens. Actuators
,
10
, pp.
321
346
.
14.
Zhang
,
Y.
,
Zeng
,
G.
,
Shakouri
,
A.
,
Wang
,
P.
, and
Bar-Cohen
,
A.
, 2005, “
Experimental Demonstration of Microrefrigerator Flip-chip Bonded With IC Chips for Hot Spot Thermal Management
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPack’05)
, San Francisco, CA, July 17–22, Paper No. IPACK2005-73466.
15.
Wang
,
P.
,
Bar-Cohen
,
A.
,
Yang
,
B.
,
Zhang
Y.
, and
Shakouri
,
A.
, 2005, “
Thermoelectric Microcooler for Hot Spot Thermal Management
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPack’05)
, San Francisco, CA, July 17–22, Paper No. IPACK2005-73244.
16.
Litvinovitch
,
V.
,
Wang
,
P.
, and
Bar-Cohen
,
A.
, 2008, “
Impact of Integrated Superlattice μ-TEC Structure on Hot Spot Remediation
,”
Proceedings of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System
, Orlando, FL (ITHERM’08), pp.
1231
1241
.
17.
Bergles
,
A. E.
, and
Bar-Cohen
,
A.
, 1994, “
Immersion Cooling of Digital Computers
,”
Cooling of Electronic Systems
,
S.
Kakac
,
H.
Yuncu
, and
K.
Hijikata
, eds.,
Kluwer Academic Publishers
,
Boston, MA
, pp.
539
621
.
18.
Bergles
,
A. E.
, and
Bar-Cohen
,
A.
, 1990, “
Direct Liquid Cooling of Microelectronic Components
,”
Advances in Thermal Modeling of Electronic Components and Systems
,
A.
Bar-Cohen
and
A. D.
Kraus
, eds.,
ASME
,
New York
, pp.
241
250
.
19.
Kim
,
D.
,
Rahim
,
E.
,
Bar-Cohen
,
A.
, and
Han
,
B.
, 2010, “
Direct Submount Cooling of High‐Power
,”
IEEE Trans. Compon. Packag. Technol. Part A
33
, pp.
698
712
.
20.
Bar-Cohen
A.
, and
Rahim
,
E.
, 2009, “
Modeling and Prediction of Two-Phase Microgap Channel Heat Transfer Characteristics
,”
Heat Transfer Eng.
,
30
, pp.
601
625
.
21.
Taitel
,
Y.
, and
Dukler
,
A. E.
, 1976, “
A Model for Prediction of Flow Regime Transitions in Horizontal and Near Horizontal Gas-liquid Flow
,”
AIChE J.
,
22
, pp.
47
55
.
22.
Shan
,
M. M.
, 1982, “
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,”
ASHRAE Trans.
,
88
, pp.
185
196
.
23.
Chen
,
J. C.
, 1967, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Develop.
,
5
(
3
), pp.
322
329
.
24.
Yang
,
Y.
, and
Fujita
,
Y.
, 2004, “
Flow Boiling Heat Transfer and Flow Pattern in Rectangular Channel of Mini-Gap
,”
Proceedings of the 2nd International Conference on Microchannels and Minichannels
, New York, Paper No. ICMM2004-2383.
25.
Cortina-Diaz
,
M.
, and
Schmidt
,
J.
, 2006, “
Flow Boiling Heat Transfer of n-Hexane and n-Octane in a Minichannel
,”
Proceedings of the 13th International Heat Transfer Conference
, Sydney, Australia.
26.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
M.
, 2009, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
,
94
(
8
), pp.
1549
1570
.
You do not currently have access to this content.