Nanofluidics is the science and technology involving a fluid flowing in or around structures with a least one dimension in the nanoscale, which is defined as the range from 1 nm to 100 nm. In this paper, we present the fabrication and characterization of nanochannels in silicon and glass. Since the lateral dimension of the channels is limited by the wavelength of UV light used in photolithography, the channel width can only be fabricated in the micrometer scale. However, the depth of the channel can be controlled precisely by the etching rate of reactive ion etching (RIE). Microchannels and access holes were etched with deep reactive ion etching (DRIE). Both nanochannels and microchannels were sealed by a Pyrex glass wafer using anodic bonding. The fabricated nanochannels were characterized by capillary filling and evaporation experiments. Due to the small channel height and weak fluorescent signal, fluorescent techniques are not suitable for the characterization of the nanochannels. A long exposure time is needed because of the limited amount of fluorescent molecules inhibit the measurement of transient and dynamic processes. However, as the channel height is shorter than all visible wavelengths, the contrast in refractive indices of air and liquid allows clear visualization of nanochannels filled with liquids. Automatic image processing with matlab allows the evaluation of capillary filling in nanochannels. Interesting phenomena and discrepancies with conventional theories were observed.

References

References
1.
Abgrall
,
P.
,and
Nguyen
,
N. T.
, 2008, “
Nanofluidic Devices and Their Applications
,”
Anal. Chem.
,
80
(
7
), pp.
2326
2341
.
2.
Albo
,
S. E.
,
Broadbelt
,
L. J.
,and
Snurr
,
R. Q.
, 2007, “
Transmission Probabilities and Particle-Wall Contact for Knudsen Diffusion in Pores of Variable Diameter
,”
Chem. Eng. Sci.
,
62
(
23
), pp.
6843
6850
.
3.
Celestini
,
F.
,and
Mortessagne
,
F.
, 2008, “
Cosine Law at the Atomic Scale: Toward Realistic Simulations of Knudsen Diffusion
,”
Phys. Rev. E
,
77
(
2
), p.
021202
.
4.
Gruener
,
S.
,and
Huber
,
P.
, 2008, “
Knudsen Diffusion in Silicon Nanochannels
,”
Phys. Rev. Lett.
,
100
(
6
), p.
064502
.
5.
Ruthven
,
D. M.
,
DeSisto
,
W. J.
,and
Higgins
,
S.
, 2009, “
Diffusion in a Mesoporous Silica Membrane: Validity of the Knudsen Diffusion Model
,”
Chem. Eng. Sci.
,
64
(
13
), pp.
3201
3203
.
6.
Tas
,
N. R.
,
Escalante
,
M.
,
van Honschoten
,
J. W.
,
Jansen
,
H. V.
,and
Elwenspoek
,
M.
, 2009, “
Capillary Negative Pressure Measured by Nanochannel Collapse
,”
Langmuir
,
26
(
3
), pp.
1473
1476
.
7.
van Honschoten
,
J. W.
,
Escalante
,
M.
,
Tas
,
N. R.
,and
Elwenspoek
,
M.
, 2009, “
Formation of Liquid Menisci in Flexible Nanochannels
,”
J. Colloid Interface Sci.
,
329
(
1
), pp.
133
139
.
8.
Laurindo
,
J. B.
,and
Prat
,
M.
, 1998, “
Numerical and Experimental Network Study of Evaporation in Capillary Porous Media. Drying Rates
,”
Chem. Eng. Sci.
,
53
(
12
), pp.
2257
2269
.
9.
Shui
,
L.
,
Eijkel
,
J. C. T.
,and
van den Berg
,
A.
, 2007, “
Multiphase Flow in Micro- and Nanochannels
,”
Sens, Actuators, B
,
121
(
1
), pp.
263
276
.
10.
Eijkel
,
J. C. T.
,and
van den Berg
,
A.
, 2005, “
Nanofluidics: What is it and what can we expect from it?
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
249
267
.
11.
Abgrall
,
P.
,
Low
,
L. N.
,and
Nguyen
,
N. T.
, 2007, “
Fabrication of Planar Nanofluidic Channels in a Thermoplastic by Hot-Embossing and Thermal Bonding
,”
Lab Chip
,
7
(
4
), pp.
520
522
.
12.
Eijkel
,
J. C. T.
,
Bomer
,
J.
,
Tas
,
N. R.
,and
Van Den Berg
,
A.
, 2004, “
1-D Nanochannels Fabricated in Polyimide
,”
Lab Chip
,
4
(
3
), pp.
161
163
.
13.
Turner
,
S. W.
,
Perez
,
A. M.
,
Lopez
,
A.
,and
Craighead
,
H. G.
, 1998, “
Monolithic Nanofluid Sieving Structures for DNA Manipulation
,”
J. Vac. Sci. Technol. B
,
16
(
6
), pp.
3835
3840
.
14.
Mao
,
P.
,and
Han
,
J.
, 2005, “
Fabrication and Characterization of 20 nm Planar Nanofluidic Channels by Glass-Glass and Glass-Silicon Bonding
,”
Lab Chip
,
5
(
8
), pp.
837
844
.
15.
Tas
,
N. R.
,
Haneveld
,
J.
,
Jansen
,
H. V.
,
Elwenspoek
,
M.
,and
van Den Berg
,
A.
, 2004, “
Capillary Filling Speed of Water in Nanochannels
,”
Appl. Phys. Lett.
,
85
(
15
), pp.
3274
3276
.
16.
Mortensen
,
N. A.
,and
Kristensen
,
A.
, 2008, “
Electroviscous Effects in Capillary Filling of Nanochannels
,”
Appl. Phys. Lett.
,
92
(
6
), p.
063110
.
17.
Phan
,
V. N.
,
Yang
,
C.
,and
Nguyen
,
N. T.
, 2009, “
Analysis of Capillary Filling in Nanochannels With Electroviscous Effects
,”
Microfluid. Nanofluid.
,
7
(
4
), pp.
519
530
.
18.
Gruener
,
S.
,and
Huber
,
P.
, 2009, “
Spontaneous Imbibition Dynamics of an n-Alkane in Nanopores: Evidence of Meniscus Freezing and Monolayer Sticking
,”
Phys. Rev. Lett.
,
103
(
17
), p.
174501
.
19.
Gruener
,
S.
,
Hofmann
,
T.
,
Wallacher
,
D.
,
Kityk
,
A. V.
,and
Huber
,
P.
, 2009, “
Capillary Rise of Water in Hydrophilic Nanopores
,”
Phys. Rev. E
,
79
(
6
), p.
067301
.
20.
Han
,
A.
,
Mondin
,
G.
,
Hegelbach
,
N. G.
,
De Rooij
,
N. F.
,and
Staufer
,
U.
, 2006, “
Filling Kinetics of Liquids in Nanochannels as Narrow as 27 nm by Capillary Force
,”
J. Colloid Interface Sci.
,
293
(
1
), pp.
151
157
.
21.
Thamdrup
,
L. H.
,
Persson
,
F.
,
Bruus
,
H.
,
Kristensen
,
A.
,and
Flyvbjerg
,
H.
, 2007, “
Experimental Investigation of Bubble Formation During Capillary Filling of SiO2 Nanoslits
,”
Appl. Phys. Lett.
,
91
(
16
), p.
163505
.
22.
Sun
,
C. K. J.
,and
Chen
,
S. H.
, 1986, “
Tracer Diffusion in Dense Ethanol: A Generalized Correlation for Nonpolar and Hydrogen-Bonded Solvents
,”
AIChE J.
,
32
(
8
), pp.
1367
1371
.
23.
Forsythe
,
W.
, 1954,
Smithsonian Physical Tables (9th Revised Edition)
,
Smithsonian Institution Press
,
Washington, DC
.
24.
Horibe
,
A.
,
Fukusako
,
S.
, and
Yamada
,
M.
, 1996, “
Surface Tension of Low-Temperature Aqueous Solutions
,”
Int. J. Thermophys.
,
17
(
2
), pp.
483
493
.
25.
Out
,
D. J. P.
,and
Los
,
J. M.
, 1980, “
Viscosity of Aqueous Solutions of Univalent Electrolytes from 5 to 95c
,”
J. Solution Chem.
,
9
(
1
), pp.
19
35
.
26.
Yaws
,
C.
, 2008,
Thermophysical Properties of Chemicals and Hydrocarbons
,
William Andrew
,
London
.
You do not currently have access to this content.