This study deals with phonon heat transport in silicon nanowires. A review of various methods that can be used to assess thermal conductance of such nanodevices is presented. Here, a specific attention is paid to the case of the Landauer Formalism, which can describe extremely thin wires conductance. In order to use this technique, the calculation of propagating modes in a silicon nanowire is necessary. Among the several existing models allowing such calculation, the elastic wave theory has been used to obtain the normal mode number. Besides, in this study, the transmission and reflection of phonon at the interface between two nanostructures are discussed. Using the diffuse mismatch model (DMM), the global transmissivity of the system made of a nanowire suspended between two thermal reservoirs is addressed. Then, the calculations of normal modes’ numbers and thermal conductances of several silicon nanowires, with various diameters set between bulk thermal reservoirs, are presented and compared to other models and available experiments.

References

References
1.
Schwab
,
K.
,
Henriksen
,
E.
,
Worlock
,
J.
, and
Roukes
,
M.
, 2000, “
Measurement of the Quantum of Thermal Conductance
,”
Nature (London)
,
404
, pp.
974
976
.
2.
Bourgeois
,
O.
,
Fournier
,
T.
, and
Chaussy
,
J.
, 2007, “
Measurements of the Thermal Conductance of Silicon Nanowires at Low Temperature
,”
J. Appl. Phys.
,
101
, p.
016104
.
3.
Murphy
,
P.
, and
Moore
,
J.
, 2007, “
Coherent Phonon Scattering Effects on Thermal Transport in Thin Semiconductor Nanowires
,”
Phys. Rev. B
,
76
, p.
155313
.
4.
Zou
,
J.
, and
Balandin
,
A.
, 2001, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
,
89
(
5
), pp.
2932
2938
.
5.
Prasher
,
R.
,
Tong
,
T.
, and
Majumdar
,
A.
, 2008, “
Approximate Analytical Models for Phonon Specific Heat and Ballistic Thermal Conductance of Nanowires
,”
Nano Lett.
,
8
(
1
), pp.
99
103
.
6.
Chen
,
R.
,
Hochbaum
,
A.
,
Murphy
,
P.
,
Moore
,
J.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2008, “
Thermal Conductance of Thin Silicon Nanowires
,”
Phys. Rev. Lett.
,
101
, p.
105501
.
7.
Santamore
,
D.
, and
Cross
,
M.
, 2002, “
Surface Scattering Analysis of Phonon Transport in the Quantum Limit Using an Elastic Model
,”
Phys. Rev. B
,
66
, p.
144302
.
8.
Auld
,
B.
, 1973,
Acoustic Fields and Waves in Solids
,
Wiley
,
New York
.
9.
Bannov
,
N.
,
Mitin
,
V.
, and
Stroscio
,
M.
, 1995, “
Electron Relaxation Times Due to the Deformation-Potential Interaction of Electrons With Confined Acoustic Phonons in a Free-Standing Quantum Well
,”
Phys. Rev. B
,
51
, pp.
9930
9942
.
10.
Yu
,
S.
,
Kim
,
K.
,
Stroscio
,
M.
, and
Iafrate
,
G.
, 1995, “
Electron-Acoustic-Phonon Scattering Rates in Cylindrical Quantum Wires
,”
Phys. Rev. B
,
51
, pp.
4695
4698
.
11.
Khitun
,
A.
,
Balandin
,
A.
, and
Wang
,
K.
, 1999, “
Modification of the Lattice Thermal Conductivity in Silicon Quantum Wires Due to Spatial Confinement of Acoustic Phonons
,”
Superlattices Microstruct.
,
26
(
3
), pp.
181
193
.
12.
Akkermans
,
E.
, and
Montambaux
,
G.
, 2004,
Physique Mésoscopique des Lectrons et des Photons
,
EDP Sciences
,
Paris
.
13.
Chen
,
G.
, 1998, “
Thermal Conductivity and Ballistic Phonon Transport in Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.
14.
Swartz
,
E.
, and
Polh
,
R.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.
15.
Modest
,
M.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
,
San Diego, CA
.
16.
Pop
,
E.
,
Dutton
,
R.
, and
Goodson
,
K.
, 2004, “
Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
,
96
, pp.
4998
5005
.
17.
Chalopin
,
Y.
,
Gillet
,
J.
, and
Volz
,
S.
, 2008, “
Predominance of Thermal Contact Resistance in a Silicon Nanowire on a Planar Substrate
,”
Phys. Rev. B
,
77
, p.
233309
.
18.
Heron
,
J.
,
Fournier
,
T.
,
Mingo
,
N.
, and
Bourgeois
,
O.
, 2009, “
Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire
,”
Nano Lett.
,
9
(
5
), pp.
1861
1865
.
19.
Prasher
,
R.
, 2006, “
Ultralow Thermal Conductivity of a Packed Bed of Crystalline Nanoparticles: A Theoretical Study
,”
Phys. Rev. B
,
74
, p.
165413
.
20.
Martin
,
P.
,
Aksamija
,
Z.
,
Pop
,
E.
, and
Ravaioli
,
U.
, 2009, “
Impact of Phonon Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires
,”
Phys. Rev. Lett.
,
102
, p.
125503
.
21.
Akguc
,
G.
, and
Gong
,
J.
, 2009, “
Wave-Scattering Formalism for Thermal Conductance in Thin Wires With Surface Disorder
,”
Phys. Rev. B
,
80
, p.
195408
.
You do not currently have access to this content.